2,512 research outputs found
Orbital and Pauli limiting effects in heavily doped BaKFeAs
We investigated the thermodynamic properties of the Fe-based lightly
disordered superconductor BaKFeAs in external
magnetic field H applied along the FeAs layers (H//ab planes). The
superconducting (SC) transition temperature for this doping level is T =
6.6 K. Our analysis of the specific heat C(T,H) measured for T < T implies
a sign change of the superconducting order parameter across different Fermi
pockets. We provide experimental evidence for the three components
superconducting order parameter. We find that all three components have values
which are comparable with the previously reported ones for the stochiometric
compound KFeAs. Our data for C(T,H) and resistivity rho(T,H) can be
interpreted in favor of the dominant orbital contribution to the pair-breaking
mechanism at low fields, while Pauli limiting effect dominates at high fields,
giving rise to a gapless superconducting state with only the leading non-zero
gap.Comment: 7 pages, 5 figure
A new generalized particle approach to parallel bandwidth allocation
This paper presents a new generalized particle (GP) approach to dynamical optimization of network bandwidth allocation, which can also be used to optimize other resource assignments in networks. By using the GP model, the complicated network bandwidth allocation problem is transformed into the kinematics and dynamics of numerous particles in two reciprocal dual force-fields. The proposed model and algorithm are featured by the powerful processing ability under a complex environment that involves the various interactions among network entities, the market mechanism between the demands and service, and other phenomena common in networks, such as congestion, metabolism, and breakdown of network entities. The GP approach also has the advantages in terms of the higher parallelism, lower computation complexities, and the easiness for hardware implementation. The properties of the approach, including the correctness, convergency and stability, are discussed in details. Simulation results attest to the effectiveness and suitability of the proposed approach. © 2006 Elsevier B.V. All rights reserved.postprin
An improvement of isochronous mass spectrometry: Velocity measurements using two time-of-flight detectors
Isochronous mass spectrometry (IMS) in storage rings is a powerful tool for
mass measurements of exotic nuclei with very short half-lives down to several
tens of microseconds, using a multicomponent secondary beam separated in-flight
without cooling. However, the inevitable momentum spread of secondary ions
limits the precision of nuclear masses determined by using IMS. Therefore, the
momentum measurement in addition to the revolution period of stored ions is
crucial to reduce the influence of the momentum spread on the standard
deviation of the revolution period, which would lead to a much improved mass
resolving power of IMS. One of the proposals to upgrade IMS is that the
velocity of secondary ions could be directly measured by using two
time-of-flight (double TOF) detectors installed in a straight section of a
storage ring. In this paper, we outline the principle of IMS with double TOF
detectors and the method to correct the momentum spread of stored ions.Comment: Accepted by Nuclear Inst. and Methods in Physics Research,
Superconductivity up to 30 K in the vicinity of quantum critical point in BaFe(AsP)
We report bulk superconductivity induced by an isovalent doping of phosphorus
in BaFe(AsP). The P-for-As substitution results in
shrinkage of lattice, especially for the FeAs block layers. The resistivity
anomaly associated with the spin-density-wave (SDW) transition in the undoped
compound is gradually suppressed by the P doping. Superconductivity with the
maximum of 30 K emerges at =0.32, coinciding with a magnetic quantum
critical point (QCP) which is evidenced by the disappearance of SDW order and
the linear temperature-dependent resistivity in the normal state. The
values were found to decrease with further P doping, and no superconductivity
was observed down to 2 K for 0.77. The appearance of superconductivity
in the vicinity of QCP hints to the superconductivity mechanism in iron-based
arsenides.Comment: 9 pages, 4 figures; more data; to appear in Journal of Physics:
Condensed Matte
- …
