3,220 research outputs found

    Specificity of aequorin luminescence to calcium

    Get PDF
    The presence of Pb(++), Co(++), Cu(++), and Cd(++), each of which possesses a certain luminescence-triggering activity of aequorin, potentially interferes with the specificity of the aequorin luminescence response to Ca(++). Interference by the above cations can be eliminated, without influencing the sensitivity of the luminescence of aequorin to Ca(++), by adding 1 mM of sodium diethyldithiocarbamate

    <Preliminary>0-methyltransferase (OMT) cDNA Clones from Pinus densiflora Seedlings

    Get PDF
    この論文は国立情報学研究所の学術雑誌公開支援事業により電子化されました

    Stau relic density at the Big-Bang nucleosynthesis era consistent with the abundance of the light element nuclei in the coannihilation scenario

    Full text link
    We calculate the relic density of stau at the beginning of the Big-Bang Nucleosynthesis (BBN) era in the coannihilation scenario of minimal supersymmetric standard model (MSSM). In this scenario, stau can be long-lived and form bound states with nuclei. We put constraints on the parameter space of MSSM by connecting the calculation of the relic density of stau to the observation of the light elements abundance, which strongly depends on the relic density of stau. Consistency between the theoretical prediction and the observational result, both of the dark matter abundance and the light elements abundance, requires the mass difference between the lighter stau and the lightest neutralino to be around 100MeV, the stau mass to be 300 -- 400 GeV, and the mixing angle of the left and right-handed staus to be sinθτ=(0.651)\sin\theta_{\tau} = (0.65 \textrm{--} 1).Comment: 9 pages, 5 figures, figure 5 correcte

    Electronic structure of the muonium center as a shallow donor in ZnO

    Full text link
    The electronic structure and the location of muonium centers (Mu) in single-crystalline ZnO were determined for the first time. Two species of Mu centers with extremely small hyperfine parameters have been observed below 40 K. Both Mu centers have an axial-symmetric hyperfine structure along with a [0001] axis, indicating that they are located at the AB_{O,//} and BC_{//} sites. It is inferred from their small ionization energy (~6 meV and 50 meV) and hyperfine parameters (~10^{-4} times the vacuum value) that these centers behave as shallow donors, strongly suggesting that hydrogen is one of the primary origins of n type conductivity in as-grown ZnO.Comment: 4 pages, 4 figures, submitted to PR

    CRYSTALLINE LUCIFERIN FROM A LUMINESCENT FISH, PARAPRIACANTHUS BERYCIFORMES

    Full text link

    Entropy production by Q-ball decay for diluting long-lived charged particles

    Full text link
    The cosmic abundance of a long-lived charged particle such as a stau is tightly constrained by the catalyzed big bang nucleosynthesis. One of the ways to evade the constraints is to dilute those particles by a huge entropy production. We evaluate the dilution factor in a case that non-relativistic matter dominates the energy density of the universe and decays with large entropy production. We find that large Q balls can do the job, which is naturally produced in the gauge-mediated supersymmetry breaking scenario.Comment: 8 pages, 1 figur

    Bounds on long-lived charged massive particles from Big Bang nucleosynthesis

    Full text link
    The Big Bang nucleosynthesis (BBN) in the presence of charged massive particles (CHAMPs) is studied in detail. All currently known effects due to the existence of bound states between CHAMPs and nuclei, including possible late-time destruction of Li6 and Li7 are included. The study sets conservative bounds on CHAMP abundances in the decay time range 3x10^2 sec - 10^12 sec. It is stressed that the production of Li6 at early times T ~ 10keV is overestimated by a factor ~ 10 when the approximation of the Saha equation for the He4 bound state fraction is utilised. To obtain conservative limits on the abundance of CHAMPs, a Monte-Carlo analysis with ~ 3x10^6 independent BBN runs, varying reaction rates of nineteen different reactions, is performed (see attached erratum, however). The analysis yields the surprising result that except for small areas in the particle parameter space conservative constraints on the abundance of decaying charged particles are currently very close to those of neutral particles. It is shown that, in case a number of heretofore unconsidered reactions may be determined reliably in future, it is conceivable that the limit on CHAMPs in the early Universe could be tightened by orders of magnitude. An ERRATUM gives limits on primordial CHAMP densities when the by Ref. Kamimura et al. recently more accurately determined CHAMP reaction rates are employed.Comment: includes Erratum showing most up to date limits after determination of the most important reaction rate

    Establishment of a New Cell-Based Assay To Measure the Activity of Sweeteners in Fluorescent Food Extracts

    Get PDF
    Taste receptors have been defined at the molecular level in the past decade, and cell-based assays have been developed using cultured cells heterologously expressing these receptors. The most popular approach to detecting the cellular response to a tastant is to measure changes in intracellular Ca2+ concentration using Ca2+-sensitive fluorescent dyes. However, this method cannot be applied to food-derived samples that contain fluorescent substances. To establish an assay system that would be applicable to fluorescent samples, we tested the use of Ca2+-sensitive photoproteins, such as aequorin and mitochondrial clytin-II, as Ca2+ indicators in a human sweet taste receptor assay. Using these systems, we successfully detected receptor activation in response to sweetener, even when fluorescent compounds coexisted. This luminescence-based assay will be a powerful tool to objectively evaluate the sweetness of food-derived samples even at an industry level

    Muonium as a shallow center in GaN

    Get PDF
    A paramagnetic muonium (Mu) state with an extremely small hyperfine parameter was observed for the first time in single-crystalline GaN below 25 K. It has a highly anisotropic hyperfine structure with axial symmetry along the [0001] direction, suggesting that it is located either at a nitrogen-antibonding or a bond-centered site oriented parallel to the c-axis. Its small ionization energy (=< 14 meV) and small hyperfine parameter (--10^{-4} times the vacuum value) indicate that muonium in one of its possible sites produces a shallow state, raising the possibility that the analogous hydrogen center could be a source of n-type conductivity in as-grown GaN.Comment: 4 figures, to be published in Phys. Rev. Letter
    corecore