8,327 research outputs found
Terrestrial solar thermionic energy conversion systems concept
Results obtained from studies of a (1) solar concentrator, (2) solar energy receiver - thermionic converter system, and (3) solar thermionic topping system are described. Peripheral subsystems, which are required for any solar energy conversion system, are also discussed
Gate-controlled generation of optical pulse trains using individual carbon nanotubes
We report on optical pulse-train generation from individual air-suspended
carbon nanotubes under an application of square-wave gate voltages.
Electrostatically-induced carrier accummulation quenches photoluminescence,
while a voltage sign reversal purges those carriers, resetting the nanotubes to
become luminescent temporarily. Frequency domain measurements reveal
photoluminescence recovery with characteristic frequencies that increase with
excitation laser power, showing that photoexcited carriers quench the emission
in a self-limiting manner. Time-resolved measurements directly confirm the
presence of an optical pulse train sychronized to the gate voltage signal, and
flexible control over pulse timing and duration is demonstrated.Comment: 4 pages, 4 figure
Electronic Structure of Charge- and Spin-controlled Sr_{1-(x+y)}La_{x+y}Ti_{1-x}Cr_{x}O_{3}
We present the electronic structure of
Sr_{1-(x+y)}La_{x+y}Ti_{1-x}Cr_{x}O_{3} investigated by high-resolution
photoemission spectroscopy. In the vicinity of Fermi level, it was found that
the electronic structure were composed of a Cr 3d local state with the
t_{2g}^{3} configuration and a Ti 3d itinerant state. The energy levels of
these Cr and Ti 3d states are well interpreted by the difference of the
charge-transfer energy of both ions. The spectral weight of the Cr 3d state is
completely proportional to the spin concentration x irrespective of the carrier
concentration y, indicating that the spin density can be controlled by x as
desired. In contrast, the spectral weight of the Ti 3d state is not
proportional to y, depending on the amount of Cr doping.Comment: 4 pages, 3 figures. Accepted for publication in Phys. Rev. Let
Spontaneous exciton dissociation in carbon nanotubes
Simultaneous photoluminescence and photocurrent measurements on individual
single-walled carbon nanotubes reveal spontaneous dissociation of excitons into
free electron-hole pairs. Correlation of luminescence intensity and
photocurrent shows that a significant fraction of excitons are dissociating
during their relaxation into the lowest exciton state. Furthermore, the
combination of optical and electrical signals also allows for extraction of the
absorption cross section and the oscillator strength. Our observations explain
the reasons for photoconductivity measurements in single-walled carbon
nanotubes being straightforward despite the large exciton binding energies.Comment: 4 pages, 3 figure
Orbital selectivity of the kink in the dispersion of Sr2RuO4
We present detailed energy dispersions near the Fermi level on the monolayer
perovskite ruthenate Sr2RuO4, determined by high-resolution angle-resolved
photoemission spectroscopy. An orbital selectivity of the kink in the
dispersion of Sr2RuO4 has been found: A kink for the Ru 4d_xy orbital is
clearly observed, but not for the Ru 4d_yz and 4d_zx ones. The result provides
insight into the origin of the kink.Comment: 5 pages, 4 figures. Accepted for publication in Phys. Rev.
Electronic structures of CrX (X=S, Te) studied by Cr 2p soft x-ray magnetic circular dichroism
Cr 2p core excited XAS and XMCD spectra of ferromagnetic CrTe
with several concentrations of =0.11-0.33 and ferrimagnetic
CrS have been measured. The observed XMCD lineshapes are found to
very weakly depend on for CrTe. The experimental results
are analyzed by means of a configuration-interaction cluster model calculation
with consideration of hybridization and electron correlation effects. The
obtained values of the spin magnetic moment by the cluster model analyses are
in agreement with the results of the band structure calculation.The calculated
result shows that the doped holes created by the Cr deficiency exist mainly in
the Te 5porbital of CrTe, whereas the holes are likely to be in Cr
3d state for CrS.Comment: 8 pages, 6 figures, accepted for publication in Physical Review
- …