114 research outputs found

    Two-Dimensional Conformal Plasma Turbulence in the Hasegawa-Mima Equation

    Full text link
    The two-dimensional (2D) conformal field theory (CFT) suggests that the 2D plasma turbulence, governed by the Hasegawa-Mima (H-M) equation, may have multiple exponents of energy spectrum in momentum space. Electrostatic potential driven by drift waves in magnetized 2D plasmas would be described by the H-M equation. On the other hand, the 2D CFT has an infinite-dimensional symmetry. When we focus on minimal models established in 2D CFT, each minimal model provides a different 2D statistical model as presented in fluid turbulence, quantum field theory and string theory, and would provide a specific exponent of the energy spectrum. The CFT analytical results in this work suggests that the H-M plasma turbulence may have multiple exponents of the energy spectrum.Comment: 4 pages, 2 figure

    Nonalcoholic steatohepatitis in hepatocarcinoma: new insights about its prognostic role in patients treated with lenvatinib

    Get PDF
    Background: Hepatocellular carcinoma (HCC) treatment remains a big challenge in the field of oncology. The liver disease (viral or not viral) underlying HCC turned out to be crucial in determining the biologic behavior of the tumor, including its response to treatment. The aim of this analysis was to investigate the role of the etiology of the underlying liver disease in survival outcomes. Patients and methods: We conducted a multicenter retrospective study on a large cohort of patients treated with lenvatinib as first-line therapy for advanced HCC from both Eastern and Western institutions. Univariate and multivariate analyses were performed. Results: Among the 1232 lenvatinib-treated HCC patients, 453 (36.8%) were hepatitis C virus positive, 268 hepatitis B virus positive (21.8%), 236 nonalcoholic steatohepatitis (NASH) correlate (19.2%) and 275 had other etiologies (22.3%). The median progression-free survival (mPFS) was 6.2 months [95% confidence interval (CI) 5.9-6.7 months] and the median overall survival (mOS) was 15.8 months (95% CI 14.9-17.2 months). In the univariate analysis for OS NASH-HCC was associated with longer mOS [22.2 versus 15.1 months; hazard ratio (HR) 0.69; 95% CI 0.56-0.85; P = 0.0006]. In the univariate analysis for PFS NASH-HCC was associated with longer mPFS (7.5 versus 6.5 months; HR 0.84; 95% CI 0.71-0.99; P = 0.0436). The multivariate analysis confirmed NASH-HCC (HR 0.64; 95% CI 0.48-0.86; P = 0.0028) as an independent prognostic factor for OS, along with albumin–bilirubin (ALBI) grade, extrahepatic spread, neutrophil-to-lymphocyte ratio, portal vein thrombosis, Eastern Cooperative Oncology Group (ECOG) performance status and alpha-fetoprotein. An interaction test was performed between sorafenib and lenvatinib cohorts and the results highlighted the positive predictive role of NASH in favor of the lenvatinib arm (P = 0.0047). Conclusion: NASH has been identified as an independent prognostic factor in a large cohort of patients with advanced HCC treated with lenvatinib, thereby suggesting the role of the etiology in the selection of patients for tyrosine kinase treatment. If validated, this result could provide new insights useful to improve the management of these patients

    Sequential therapies after atezolizumab plus bevacizumab or lenvatinib first-line treatments in hepatocellular carcinoma patients

    Get PDF
    Introduction: The aim of this retrospective proof-of-concept study was to compare different second-line treatments for patients with hepatocellular carcinoma and progressive disease (PD) after first-line lenvatinib or atezolizumab plus bevacizumab.Materials and methods: A total of 1381 patients had PD at first-line therapy. 917 patients received lenvatinib as first-line treatment, and 464 patients atezolizumab plus bevacizumab as first-line.Results: 49.6% of PD patients received a second-line therapy without any statistical difference in overall survival (OS) between lenvatinib (20.6 months) and atezolizumab plus bev-acizumab first-line (15.7 months; p = 0.12; hazard ratio [HR] = 0.80). After lenvatinib first-line, there wasn't any statistical difference between second-line therapy subgroups (p = 0.27; sorafenib HR: 1; immunotherapy HR: 0.69; other therapies HR: 0.85). Patients who under-went trans-arterial chemo-embolization (TACE) had a significative longer OS than patients who received sorafenib (24.7 versus 15.8 months, p < 0.01; HR = 0.64). After atezolizumab plus bevacizumab first-line, there was a statistical difference between second-line therapy subgroups (p < 0.01; sorafenib HR: 1; lenvatinib HR: 0.50; cabozantinib HR: 1.29; other therapies HR: 0.54). Patients who received lenvatinib (17.0 months) and those who under-went TACE (15.9 months) had a significative longer OS than patients treated with sorafenib (14.2 months; respectively, p = 0.01; HR = 0.45, and p < 0.05; HR = 0.46).Conclusion: Approximately half of patients receiving first-line lenvatinib or atezolizumab plus bevacizumab access second-line treatment. Our data suggest that in patients progressed to atezolizumab plus bevacizumab, the systemic therapy able to achieve the longest survival is lenvatinib, while in patients progressed to lenvatinib, the systemic therapy able to achieve the longest survival is immunotherapy
    corecore