5,626 research outputs found

    Peak polarity selector Patent

    Get PDF
    Peak polarity selector for monitoring waveform

    Electronic compressibility of layer polarized bilayer graphene

    Full text link
    We report on a capacitance study of dual gated bilayer graphene. The measured capacitance allows us to probe the electronic compressibility as a function of carrier density, temperature, and applied perpendicular electrical displacement D. As a band gap is induced with increasing D, the compressibility minimum at charge neutrality becomes deeper but remains finite, suggesting the presence of localized states within the energy gap. Temperature dependent capacitance measurements show that compressibility is sensitive to the intrinsic band gap. For large displacements, an additional peak appears in the compressibility as a function of density, corresponding to the presence of a 1-dimensional van Hove singularity (vHs) at the band edge arising from the quartic bilayer graphene band structure. For D > 0, the additional peak is observed only for electrons, while D < 0 the peak appears only for holes. This asymmetry that can be understood in terms of the finite interlayer separation and may be useful as a direct probe of the layer polarization

    Mojave remote sensing field experiment

    Get PDF
    The Mojave Remote Sensing Field Experiment (MFE), conducted in June 1988, involved acquisition of Thermal Infrared Multispectral Scanner (TIMS); C, L, and P-band polarimetric radar (AIRSAR) data; and simultaneous field observations at the Pisgah and Cima volcanic fields, and Lavic and Silver Lake Playas, Mojave Desert, California. A LANDSAT Thematic Mapper (TM) scene is also included in the MFE archive. TM-based reflectance and TIMS-based emissivity surface spectra were extracted for selected surfaces. Radiative transfer procedures were used to model the atmosphere and surface simultaneously, with the constraint that the spectra must be consistent with field-based spectral observations. AIRSAR data were calibrated to backscatter cross sections using corner reflectors deployed at target sites. Analyses of MFE data focus on extraction of reflectance, emissivity, and cross section for lava flows of various ages and degradation states. Results have relevance for the evolution of volcanic plains on Venus and Mars

    A Spectral Algorithm with Additive Clustering for the Recovery of Overlapping Communities in Networks

    Get PDF
    This paper presents a novel spectral algorithm with additive clustering designed to identify overlapping communities in networks. The algorithm is based on geometric properties of the spectrum of the expected adjacency matrix in a random graph model that we call stochastic blockmodel with overlap (SBMO). An adaptive version of the algorithm, that does not require the knowledge of the number of hidden communities, is proved to be consistent under the SBMO when the degrees in the graph are (slightly more than) logarithmic. The algorithm is shown to perform well on simulated data and on real-world graphs with known overlapping communities.Comment: Journal of Theoretical Computer Science (TCS), Elsevier, A Para\^itr

    The architectures of media power: editing, the newsroom, and urban public space

    Get PDF
    This paper considers the relation of the newsroom and the city as a lens into the more general relation of production spaces and mediated publics. Leading theoretically from Lee and LiPuma’s (2002) notion of ‘cultures of circulation’, and drawing on an ethnography of the Toronto Star, the paper focuses on how media forms circulate and are enacted through particular practices and material settings. With its attention to the urban milieus and orientations of media organizations, this paper exhibits both affinities with but also differences to current interests in the urban architectures of media, which describe and theorize how media get ‘built into’ the urban experience more generally. In looking at editing practices situated in the newsroom, an emphasis is placed on the phenomenological appearance of media forms both as objects for material assembly as well as more abstracted subjects of reflexivity, anticipation and purposiveness. Although this is explored with detailed attention to the settings of the newsroom and the city, the paper seeks to also provide insight into the more general question of how publicness is material shaped and sited

    A Plaquette Basis for the Study of Heisenberg Ladders

    Full text link
    We employ a plaquette basis-generated by coupling the four spins in a 2×22\times2 lattice to a well-defined total angular momentum-for the study of Heisenberg ladders with antiferromagnetic coupling. Matrix elements of the Hamiltonian in this basis are evaluated using standard techniques in angular-momentum (Racah) algebra. We show by exact diagonalization of small (2×42\times4 and 2×62\times6) systems that in excess of 90% of the ground-state probability is contained in a very small number of basis states. These few basis states can be used to define a severely truncated basis which we use to approximate low-lying exact eigenstates. We show how, in this low-energy basis, the isotropic spin-1/2 Heisenberg ladder can be mapped onto an anisotropic spin-1 ladder for which the coupling along the rungs is much stronger than the coupling between the rungs. The mapping thereby generates two distinct energy scales which greatly facilitates understanding the dynamics of the original spin-1/2 ladder. Moreover, we use these insights to define an effective low-energy Hamiltonian in accordance to the newly developed COntractor REnormalization group (CORE) method. We show how a simple range-2 CORE approximation to the effective Hamiltonian to be used with our truncated basis reproduces the low-energy spectrum of the exact 2×62\times6 theory at the \alt 1% level.Comment: 12 pages with two postscript figure

    Three Bosons in One Dimension with Short Range Interactions I: Zero Range Potentials

    Full text link
    We consider the three-boson problem with δ\delta-function interactions in one spatial dimension. Three different approaches are used to calculate the phase shifts, which we interpret in the context of the effective range expansion, for the scattering of one free particle a off of a bound pair. We first follow a procedure outlined by McGuire in order to obtain an analytic expression for the desired S-matrix element. This result is then compared to a variational calculation in the adiabatic hyperspherical representation, and to a numerical solution to the momentum space Faddeev equations. We find excellent agreement with the exact phase shifts, and comment on some of the important features in the scattering and bound-state sectors. In particular, we find that the 1+2 scattering length is divergent, marking the presence of a zero-energy resonance which appears as a feature when the pair-wise interactions are short-range. Finally, we consider the introduction of a three-body interaction, and comment on the cutoff dependence of the coupling.Comment: 9 figures, 2 table
    • …
    corecore