612 research outputs found

    Incentivized Exploration for Multi-Armed Bandits under Reward Drift

    Full text link
    We study incentivized exploration for the multi-armed bandit (MAB) problem where the players receive compensation for exploring arms other than the greedy choice and may provide biased feedback on reward. We seek to understand the impact of this drifted reward feedback by analyzing the performance of three instantiations of the incentivized MAB algorithm: UCB, ε\varepsilon-Greedy, and Thompson Sampling. Our results show that they all achieve O(logT)\mathcal{O}(\log T) regret and compensation under the drifted reward, and are therefore effective in incentivizing exploration. Numerical examples are provided to complement the theoretical analysis.Comment: 10 pages, 2 figures, AAAI 202

    Widening Viewing Angles of Automultiscopic Displays using Refractive Inserts

    Get PDF

    Creation of intense heavy ion beams with short pulse duration in BRing at HIAF

    Get PDF

    Quantitative assessment of retinal microvascular remodeling in eyes that underwent idiopathic epiretinal membrane surgery

    Get PDF
    Purpose: To explore the surgical outcomes of the macular microvasculature and visual function in eyes with idiopathic epiretinal membrane (iERM) using spectral-domain optical coherence tomography angiography (SD-OCTA).Methods: This observational, cross-sectional study included 41 participants who underwent iERM surgery with a 3-month (3M) follow-up. Forty-one healthy eyes formed the control group. The assessments included best-corrected visual acuity (BCVA) and mean sensitivity (MS) by microperimetry and SD-OCTA assessment of vessel tortuosity (VT), vessel density (VD), foveal avascular zone, and retinal thickness (RT).Results: The findings showed statistically significant differences in VT, foveal avascular zone parameters, RT, BCVA, and MS between the iERM and control groups (p < 0.05). After iERM surgery, the macular VT, SCP VD, and RT decreased significantly (p < 0.01) while the DCP VD increased (p = 0.029). The BCVA improved significantly (p < 0.001) and was associated with the MS (rs = −0.377, p = 0.015). MS was associated with the SCP VD and RT at 3M (SCP VD rs = 0.511, p = 0.001; RT rs = 0.456, p = 0.003). In the superior quadrant, the MS improved significantly (p < 0.001) and the improvement of MS was associated with the reduction of VT (β = −0.330, p = 0.034).Conclusion: Microcirculatory remodeling and perfusion recovery were observed within 3 months after iERM surgery. VT was a novel index for evaluating the morphology of the retinal microvasculature in eyes with iERM and was associated with MS in the superior quadrant

    Fault Diagnosis of Rotating Machinery Bearings Based on Improved DCNN and WOA-DELM

    Get PDF
    A bearing is a critical component in the transmission of rotating machinery. However, due to prolonged exposure to heavy loads and high-speed environments, rolling bearings are highly susceptible to faults, Hence, it is crucial to enhance bearing fault diagnosis to ensure safe and reliable operation of rotating machinery. In order to achieve this, a rotating machinery fault diagnosis method based on a deep convolutional neural network (DCNN) and Whale Optimization Algorithm (WOA) optimized Deep Extreme Learning Machine (DELM) is proposed in this paper. DCNN is a combination of the Efficient Channel Attention Net (ECA-Net) and Bi-directional Long Short-Term Memory (BiLSTM). In this method, firstly, a DCNN classification network is constructed. The ECA-Net and BiLSTM are brought into the deep convolutional neural network to extract critical features. Next, the WOA is used to optimize the weight of the initial input layer of DELM to build the WOA-DELM classifier model. Finally, the features extracted by the Improved DCNN (IDCNN) are sent to the WOA-DELM model for bearing fault diagnosis. The diagnostic capability of the proposed IDCNN-WOA-DELM method was evaluated through multiple-condition fault diagnosis experiments using the CWRU-bearing dataset with various settings, and comparative tests against other methods were conducted as well. The results indicate that the proposed method demonstrates good diagnostic performance

    Preparation and Photocatalytic Properties of SnO 2

    Get PDF
    SnO2 nanoparticles coated on nitrogen-doped carbon nanotubes were prepared successfully via a simple wet-chemical route. The as-obtained SnO2/CNx composites were characterized using X-ray powder diffraction, scanning electron microscopy, and transmission electron microscopy. The photocatalytic activity of as-prepared SnO2/CNx for degradation Rhodamine B under UV light irradiation was investigated. The results show that SnO2/CNx nanocomposites have a higher photocatalytic activity than pure SnO2 and SnO2/CNTs nanocomposites. This enhanced photoresponse indicates that the photoinduced electrons in the SnO2 prefer separately transferring to the CNx, which has a high degree of defects. As a consequence, the radiative recombination of the electron-hole pairs is hampered and the photocatalytic activity is significantly enhanced for the SnO2/CNx photocatalysts

    Solvothermal synthesis of ternary sulfides of Sb2_xBixS3 (x=0.4,1) with 3D flower-like architectures

    Get PDF
    Flower-like nanostructures of Sb2 − xBixS3(x = 0.4, 1.0) were successfully prepared using both antimony diethyldithiocarbamate [Sb(DDTC)3] and bismuth diethyldithiocarbamate [Bi(DDTC)3] as precursors under solvothermal conditions at 180 °C. The prepared Sb2 − xBixS3 with flower-like 3D architectures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED). The flower-like architectures, with an average diameter of ~4 μm, were composed of single-crystalline nanorods with orthorhombic structures. The optical absorption properties of the Sb2 − xBixS3 nanostructures were investigated by UV–Visible spectroscopy, and the results indicate that the Sb2 − xBixS3 compounds are semiconducting with direct band gaps of 1.32 and 1.30 eV for x = 0.4 and 1.0, respectively. On the basis of the experimental results, a possible growth mechanism for the flower-like Sb2 − xBixS3 nanostructures is suggested
    corecore