969 research outputs found
The SAURON project – XVII. Stellar population analysis of the absorption line strength maps of 48 early-type galaxies
The definitive version can be found at: http://onlinelibrary.wiley.com/ Copyright Royal Astronomical SocietyWe present a stellar population analysis of the absorption line strength maps for 48 early-type galaxies from the SAURON sample. Using the line strength index maps of Hβ, Fe5015 and Mg b, measured in the Lick/IDS system and spatially binned to a constant signal-to-noise ratio, together with predictions from up-to-date stellar population models, we estimate the simple stellar population-equivalent (SSP-equivalent) age, metallicity and abundance ratio [α/Fe] over a two-dimensional field extending up to approximately one effective radius. A discussion of calibrations and differences between model predictions is given. Maps of SSP-equivalent age, metallicity and abundance ratio [α/Fe] are presented for each galaxy. We find a large range of SSP-equivalent ages in our sample, of which ∼40 per cent of the galaxies show signs of a contribution from a young stellar population. The most extreme cases of post-starburst galaxies, with SSP-equivalent ages of ≤3 Gyr observed over the full field-of-view, and sometimes even showing signs of residual star formation, are restricted to low-mass systems (σe≤ 100 km s−1 or ∼2 × 1010 M⊙). Spatially restricted cases of young stellar populations in circumnuclear regions can almost exclusively be linked to the presence of star formation in a thin, dusty disc/ring, also seen in the near-UV or mid-IR on top of an older underlying stellar population. The flattened components with disc-like kinematics previously identified in all fast rotators are shown to be connected to regions of distinct stellar populations. These range from the young, still star-forming circumnuclear discs and rings with increased metallicity preferentially found in intermediate-mass fast rotators, to apparently old structures with extended disc-like kinematics, which are observed to have an increased metallicity and mildly depressed [α/Fe] ratio compared to the main body of the galaxy. The slow rotators, often harbouring kinematically decoupled components (KDC) in their central regions, generally show no stellar population signatures over and above the well-known metallicity gradients in early-type galaxies and are largely consistent with old (≥10 Gyr) stellar populations. Using radially averaged stellar population gradients we find in agreement with Spolaor et al. a mass–metallicity gradient relation where low-mass fast rotators form a sequence of increasing metallicity gradient with increasing mass. For more massive systems (above ∼3.5 × 1010 M⊙) there is an overall downturn such that metallicity gradients become shallower with increased scatter at a given mass leading to the most massive systems being slow rotators with relatively shallow metallicity gradients. The observed shallower metallicity gradients and increased scatter could be a consequence of the competition between different star formation and assembly scenarios following a general trend of diminishing gas fractions and more equal-mass mergers with increasing mass, leading to the most massive systems being devoid of ordered motion and signs of recent star formation.Peer reviewe
Long-distance dispersal of pigeons and doves generated new ecological opportunities for host-switching and adaptive radiation by their parasites.
Adaptive radiation is an important mechanism of organismal diversification and can be triggered by new ecological opportunities. Although poorly studied in this regard, parasites are an ideal group in which to study adaptive radiations because of their close associations with host species. Both experimental and comparative studies suggest that the ectoparasitic wing lice of pigeons and doves have adaptively radiated, leading to differences in body size and overall coloration. Here, we show that long-distance dispersal by dove hosts was central to parasite diversification because it provided new ecological opportunities for parasites to speciate after host-switching. We further show that among extant parasite lineages host-switching decreased over time, with cospeciation becoming the more dominant mode of parasite speciation. Taken together, our results suggest that host dispersal, followed by host-switching, provided novel ecological opportunities that facilitated adaptive radiation by parasites
Crystallization of the ordered vortex phase in high temperature superconductors
The Landau-Khalatnikov time-dependent equation is applied to describe the
crystallization process of the ordered vortex lattice in high temperature
superconductors after a sudden application of a magnetic field. Dynamic
coexistence of a stable ordered phase and an unstable disordered phase, with a
sharp interface between them, is demonstrated. The transformation to the
equilibrium ordered state proceeds by movement of this interface from the
sample center toward its edge. The theoretical analysis dictates specific
conditions for the creation of a propagating interface, and provides the time
scale for this process.Comment: 8 pages and 3 figures; to be published in Phys. Rev. B (Rapid
Communications section
Experimental Vacuum Squeezing in Rubidium Vapor via Self-Rotation
We report the generation of optical squeezed vacuum states by means of
polarization self-rotation in rubidium vapor following a proposal by Matsko et
al. [Phys. Rev. A 66, 043815 (2002)]. The experimental setup, involving in
essence just a diode laser and a heated rubidium gas cell, is simple and easily
scalable. A squeezing of 0.85+-0.05 dB was achieved
Dynamical Horizons and their Properties
A detailed description of how black holes grow in full, non-linear general
relativity is presented. The starting point is the notion of dynamical
horizons. Expressions of fluxes of energy and angular momentum carried by
gravitational waves across these horizons are obtained. Fluxes are local and
the energy flux is positive. Change in the horizon area is related to these
fluxes. A notion of angular momentum and energy is associated with
cross-sections of the horizon and balance equations, analogous to those
obtained by Bondi and Sachs at null infinity, are derived. These in turn lead
to generalizations of the first and second laws of black hole mechanics. The
relation between dynamical horizons and their asymptotic states --the isolated
horizons-- is discussed briefly. The framework has potential applications to
numerical, mathematical, astrophysical and quantum general relativity.Comment: 44 pages, 2 figures, RevTeX4. Minor typos corrected. Final PRD
versio
Dyonic Kerr-Newman black holes, complex scalar field and Cosmic Censorship
We construct a gedanken experiment, in which a weak wave packet of the
complex massive scalar field interacts with a four-parameter (mass, angular
momentum, electric and magnetic charges) Kerr-Newman black hole. We show that
this interaction cannot convert an extreme the black hole into a naked
sigularity for any black hole parameters and any generic wave packet
configuration. The analysis therefore provides support for the weak cosmic
censorship conjecture.Comment: Refined emphasis on the weak cosmic censorship conjecture,
conclusions otherwise unchanged. Also, two sections merged, literature review
updated, references added, a few typos correcte
Newtonian Analysis of Gravitational Waves from Naked Singularity
Spherical dust collapse generally forms a shell focusing naked singularity at
the symmetric center. This naked singularity is massless. Further the Newtonian
gravitational potential and speed of the dust fluid elements are everywhere
much smaller than unity until the central shell focusing naked singularity
formation if an appropriate initial condition is set up. Although such a
situation is highly relativistic, the analysis by the Newtonian approximation
scheme is available even in the vicinity of the space-time singularity. This
remarkable feature makes the analysis of such singularity formation very easy.
We investigate non-spherical even-parity matter perturbations in this scheme by
complementary using numerical and semi-analytical approaches, and estimate
linear gravitational waves generated in the neighborhood of the naked
singularity by the quadrupole formula. The result shows good agreement with the
relativistic perturbation analysis recently performed by Iguchi et al. The
energy flux of the gravitational waves is finite but the space-time curvature
carried by them diverges.Comment: 23 pages, 8 figure
The repulsive nature of naked singularities from the point of view of Quantum Mechanics
We use the Dirac equation coupled to a background metric to examine what
happens to quantum mechanical observables like the probability density and the
radial current in the vicinity of a naked singularity of the
Reissner-Nordstr\"{o}m type. We find that the wave function of the Dirac
particle is regular in the point of the singularity. We show that the
probability density is exactly zero at the singularity reflecting
quantum-mechanically the repulsive nature of the naked singularity.
Furthermore, the surface integral of the radial current over a sphere in the
vicinity of the naked singularity turns out to be also zero.Comment: 11 page
Lubricating Bacteria Model for Branching growth of Bacterial Colonies
Various bacterial strains (e.g. strains belonging to the genera Bacillus,
Paenibacillus, Serratia and Salmonella) exhibit colonial branching patterns
during growth on poor semi-solid substrates. These patterns reflect the
bacterial cooperative self-organization. Central part of the cooperation is the
collective formation of lubricant on top of the agar which enables the bacteria
to swim. Hence it provides the colony means to advance towards the food. One
method of modeling the colonial development is via coupled reaction-diffusion
equations which describe the time evolution of the bacterial density and the
concentrations of the relevant chemical fields. This idea has been pursued by a
number of groups. Here we present an additional model which specifically
includes an evolution equation for the lubricant excreted by the bacteria. We
show that when the diffusion of the fluid is governed by nonlinear diffusion
coefficient branching patterns evolves. We study the effect of the rates of
emission and decomposition of the lubricant fluid on the observed patterns. The
results are compared with experimental observations. We also include fields of
chemotactic agents and food chemotaxis and conclude that these features are
needed in order to explain the observations.Comment: 1 latex file, 16 jpeg files, submitted to Phys. Rev.
- …