15 research outputs found

    A steady-state saturation model to determine the subsurface travel time (STT) in complex hillslopes

    Get PDF
    The travel time of subsurface flow in complex hillslopes (hillslopes with different plan shape and profile curvature) is an important parameter in predicting the subsurface flow in catchments. This time depends on the hillslopes geometry (plan shape and profile curvature), soil properties and climate conditions. The saturation capacity of hillslopes affect the travel time of subsurface flow. The saturation capacity, and subsurface travel time of compound hillslopes depend on parameters such as soil depth, porosity, soil hydraulic conductivity, plan shape (convergent, parallel or divergent), hillslope length, profile curvature (concave, straight or convex) and recharge rate to the groundwater table. An equation for calculating subsurface travel time for all complex hillslopes was presented. This equation is a function of the saturation zone length (SZL) on the surface. Saturation zone length of the complex hillslopes was calculated numerically by using the hillslope-storage kinematic wave equation for subsurface flow, so an analytical equation was presented for calculating the saturation zone length of the straight hillslopes and all plan shapes geometries. Based on our results, the convergent hillslopes become saturated very soon and they showed longer SZL with shorter travel time compared to the parallel and divergent ones. The subsurface average flow rate in convergent hillslopes is much less than the divergent ones in the steady state conditions. Concerning to subsurface travel time, convex hillslopes have more travel time in comparison to straight and concave hillslopes. The convex hillslopes exhibit more average flow rate than concave hillslopes and their saturation capacity is very low. Finally, the effects of recharge rate variations, average bedrock slope and soil depth on saturation zone extension were investigated

    A Bayesian assessment of an approximate model for unconfined water flow in sloping layered porous media

    Get PDF
    The prediction of water table height in unconfined layered porous media is a difficult modelling problem that typically requires numerical simulation. This paper proposes an analytical model to approximate the exact solution based on a steady-state Dupuit–Forchheimer analysis. The key contribution in relation to a similar model in the literature relies in the ability of the proposed model to consider more than two layers with different thicknesses and slopes, so that the existing model becomes a special case of the proposed model herein. In addition, a model assessment methodology based on the Bayesian inverse problem is proposed to efficiently identify the values of the physical parameters for which the proposed model is accurate when compared against a reference model given by MODFLOW-NWT, the open-source finite-difference code by the U.S. Geological Survey. Based on numerical results for a representative case study, the ratio of vertical recharge rate to hydraulic conductivity emerges as a key parameter in terms of model accuracy so that, when appropriately bounded, both the proposed model and MODFLOW-NWT provide almost identical results

    Microwave processing of cement and concrete materials - towards an industrial reality?

    Get PDF
    Each year a substantial body of literature is published on the use of microwaves to process cement and concrete materials. Yet to date, very few if any have lead the realisation of a commercial scale industrial system and is the context under which this review has been undertaken. The state-of the–art is evaluated for opportunities, and the key barriers to the development of new microwave-based processing techniques to enhance production, processing and recycling of cement and concrete materials. Applications reviewed include pyro-processing of cement clinker; accelerated curing, non-destructive testing and evaluation (NDT&E), and end-of-life processing including radionuclide decontamination

    In-situ nitrate remediation using nano iron/nickel particles

    No full text
    Originally, the application of nano zero valent iron/nickel (nZVI/Ni) particles for nitrate removal in porous media was studied. nZVI/Ni was prepared and employed in batch and continuous modes. Based on batch experiments, the reaction kinetics was consistent with the adsorption model by the order of 1–1.5. The variation of the kinetics order depends on pH and nickel content. So that highest reactivity was observed for nZVI with 10% of Ni at pH ≀ 3. Nitrate remediation in a continuous system was mostly influenced by seepage velocity, quantity and freshness of nZVI/Ni and particle size of porous media. In a batch mode, the maximum nitrate removal was 99% while in a continuous mode it did not exceed 85%
    corecore