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Abstract. The travel time of subsurface flow in complex hill-
slopes (hillslopes with different plan shape and profile curva-
ture) is an important parameter in predicting the subsurface
flow in catchments. This time depends on the hillslopes ge-
ometry (plan shape and profile curvature), soil properties and
climate conditions. The saturation capacity of hillslopes af-
fect the travel time of subsurface flow. The saturation ca-
pacity, and subsurface travel time of compound hillslopes
depend on parameters such as soil depth, porosity, soil hy-
draulic conductivity, plan shape (convergent, parallel or di-
vergent), hillslope length, profile curvature(concave, straight
or convex) and recharge rate to the groundwater table. An
equation for calculating subsurface travel time for all com-
plex hillslopes was presented. This equation is a function of
the saturation zone length (SZL) on the surface. Saturation
zone length of the complex hillslopes was calculated numeri-
cally by using the hillslope-storage kinematic wave equation
for subsurface flow, so an analytical equation was presented
for calculating the saturation zone length of the straight hill-
slopes and all plan shapes geometries. Based on our results,
the convergent hillslopes become saturated very soon and
they showed longer SZL with shorter travel time compared to
the parallel and divergent ones. The subsurface average flow
rate in convergent hillslopes is much less than the divergent
ones in the steady state conditions. Concerning to subsur-
face travel time , convex hillslopes have more travel time in
comparison to straight and concave hillslopes. The convex
hillslopes exhibit more average flow rate than concave hill-
slopes and their saturation capacity is very low. Finally, the
effects of recharge rate variations, average bedrock slope and
soil depth on saturation zone extension were investigated.

Correspondence to:T. Sabzevari
(tooraj419@yahoo.com)

1 Introduction

Subsurface flow is percolating water that encounters an im-
pending horizon in shallow soil, where the water is diverted
horizontally and reaches the stream channel. Due to the high
permeability of topsoil and generally greater potential gradi-
ents in these upper sloping horizons, water following a top-
soil path reaches the stream channel much quicker than the
groundwater flow does. Some of this water arrives at the
channel soon enough to contribute to the storm hydrograph
and is classified as subsurface storm flow. The dynamic inter-
action between the saturated-unsaturated subsurface flow and
surface flow has been examined by many researchers (Freeze
and Harlan, 1969; Freeze, 1971, 1972a, 1972b; Beven, 1982)
through numerical simulations. The dynamics of water in a
catchment and particularly at the surface/subsurface interface
is still poorly understood. For simulating surface and sub-
surface flow in catchments, the changing of the saturated and
unsaturated area by spatial and temporal rainfall distributions
during storms is very important.

In the past, the Geomorphological Instantaneous Unit Hy-
drograph (GIUH) was used for simulating surface runoff
(Rodriguez-Iturbe, 1979; Gupta et al., 1980; Rodriguez-
Iturbe et al., 1982; Chutha and Dooge, 1990; Lee and Yen,
1997, 2005; Olivera and Maidment, 1999). Recently, the
GIUH model has been applied to consider both the surface
and subsurface flow processes (Lee and Chang, 2005). This
method is based on travel time probability distributions for
runoff in surface flow and subsurface flow regions and chan-
nels. Travel time is defined as the average time required
for water particles to travel from the top of the hillslope
via the subsurface hillslope layers to the outlet. Henderson
and Wooding (1964) simulated the surface and subsurface
flow by using kinematic-wave approximation. The Hender-
son and Wooding equations showed that the travel time of
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the subsurface flow is proportional to the soil porosity and
inversely proportional to the slope and hydraulic conductiv-
ity. Yet, their method cannot describe the effects of recharge
rate, plan shape of hillslope(divergent, parallel, convergent),
profile curvature (convex, planer and concave) and soil depth
on subsurface travel time. The effect of the mentioned pa-
rameters on the surface travel time has been proved in past
researches (Henderson, 1966; Eagleson, 1970; Overton and
Meadows, 1976; Singh, 1882; Agiralioglu, 1985 and Akan,
1993).

In a simple hillslope experiencing a uniform net recharge,
the analytical derivation of the response time behavior in-
volves solving the one or two dimensional transient flow par-
tial differential equation for hillslopes, popularly known as
the Boussinesq equation (Boussinesq, 1877).

A general analytical solution to this non-linear equation
has never been achieved. A number of researchers have
solved simplified forms of this equation analytically, mostly
for steady-state and for various special cases. Verhoest and
Troch (2000), Troch et al. (2002) and Troch et al. (2004)
developed analytical solutions for the Boussinesq equation
using linearization and the method of characteristics, respec-
tively. Huyck et al. (2005) developed an analytical solution
to the linearized Boussinesq equation for realistic aquifer
shapes and temporally variable recharge rates.

Troch et al. (2003) and Hilberts et al. (2004) demonstrated
that (numerical) solutions of the 1D hillslope-storage Boussi-
nesq (hsB) equation account explicitly for plan shape (by
means of the hillslope width function) and profile curvature
(local bedrock slope angle and hillslope soil depth function)
of the hillslope. To investigate the key role of geometric char-
acteristics of hillslopes (plan shape and profile curvature) on
shallow landslides, Talebi et al. (2008a) presented a steady-
state analytical hillslope stability model based on kinematic
wave subsurface storage dynamics. Comparison between the
hillslope-storage Boussinesq and Richards’ equation models
for various scenarios and hillslope configurations shows that
the hsB model is able to capture the general features of the
storage and outflow responses of complex hillslopes (Pani-
coni et al., 2003; Hilberts et al., 2004).

Berne et al. (2005) used the hsB model for the similarity
analysis of subsurface flow response of hillslopes with com-
plex geometry. He linearized the hsB equations by expo-
nential width functions and introduced the hillslope Pe’clet
number, an efficient similarity parameter for describing the
hillslope subsurface flow response.

Aryal (2005) and O’Loughlin (2005) have shown that the
hillslope travel time in subsurface flow is dependent on hill-
slope length, hydraulic conductivity, plan shape, profile cur-
vature and recharge rate. They demonstrated equations of
saturation zone boundary for hillslope in steady state and in-
troduced three equations for calculating complex hillslopes
travel time based on Zaslavsky and Rogowski (1969) geom-
etry equations.

 
 
 Fig. 1. (a)A three dimensional view of a convergent hillslope over-
lying a straight bedrock profile,(b) a definition sketch of the cross
section of a one-dimensional hillslope aquifer overlying a bedrock
with a constant bedrock slope angle (after Talebi et al., 2008a).

The objectives of this paper are: (i) introduce an equa-
tion for subsurface travel time of all complex hillslopes with
regard to parameters such as the saturation zone length , to-
tal length, soil porosity, profile curvature, soil hydraulic con-
ductivity , and average bedrock slope, (ii) calculate the sat-
uration zone length of nine basic hillslopes in steady-state
conditions, (iii) explore the effects of different factors such
as the soil depth, the recharge rate, bedrock slope angle on
travel time and saturation zone length, (iv) present analytical
expressions for calculating saturation zone length in straight
hillslopes for different shape functions (convergent, parallel,
divergent) and finally, (v) compare the drainage capacity of
all complex hillslopes based on their average discharge rates.

2 Model formulation

2.1 Hillslope geometry

Evans (1980) characterized hillslopes by the combined cur-
vature in the gradient direction (profile curvature) and the
direction perpendicular to the gradient (contour or plan cur-
vature). The surface of an individual hillslope is represented
by the following function:

z(x,y) = E+H(1−x/L)n +ωy2 (1)

wherez is the elevation (m),x is horizontal distance mea-
sured in the downstream length (m) direction of the surface,
y is the horizontal distance (m) from the slope centre in the
direction perpendicular to the length direction (the width di-
rection),E is the minimum elevation (m) of the surface above
an arbitrary datum,H is the maximum elevation (m) differ-
ence defined by the surface,L is the total horizontal length
of hillslope (m),n is a profile curvature parameter, andω is
a plan curvature parameter. Figure 1 shows a hillslope with
a three-dimensional view of a convergent hillslope on top of
an impermeable layer and a straight bedrock.

Figure 2 illustrates nine basic hillslope types that are
formed by combining three plan and three profile curva-
tures. The geometrical parameters for the nine characterized

Hydrol. Earth Syst. Sci., 14, 891–900, 2010 www.hydrol-earth-syst-sci.net/14/891/2010/



T. Sabzevari et al.: A steady-state saturation model to determine (SST) 893

 
 
 
 
 
 

Fig. 2. A three-dimensional view (top) and a two-dimensional plot
of the contour lines and slope divides (bottom) of the nine hillslopes
considered in this study (after Hilbert et al., 2004).

Table 1. Geometrical parameters for the nine characterized hill-
slopes (after Talebi et al., 2008a).

Hillslope Profile Plan n[-] ω [10−3m−1] Area
Nr. Curvature Shape [m2]

1 concave convergent 1.5 +2.7 2441
2 concave parallel 1.5 0 5000
3 concave divergent 1.5 −2.7 1049
4 straight convergent 1 +2.7 2162
5 straight parallel 1 0 5000
6 straight divergent 1 −2.7 2162
7 convex convergent 0.5 +2.7 1402
8 convex parallel 0.5 0 5000
9 convex divergent 0.5 −2.7 2268

hillslopes are listed in Table 1. The values of the hydrological
parameters have been listed in Table 2.

The assumptions applied to modeling subsurface govern-
ment equations are: The saturated hydraulic conductivity is
assumed to be uniform with depth, the hydraulic gradient is
equal to the local surface slope, soil depth is uniform and
recharge rate is constant (the steady state conditions).

2.2 The hillslope-storage kinematic wave equation

The soil moisture storage capacity (Sc) has been defined by
Fan and Bras (1998) (Troch et al., 2003; Talebi et al., 2008a)

Table 2. Hydrological parameters (based on Talebi et al., 2008a).

Parameter name Symbol Units Value

Saturated hydraulic conductivity k ms−1 0.0001
Effective porosity f − 0.34
Recharge N mmd−1 30
Soil depth(vertical) D m 2
Slope angle β deg 15

as:

Sc(x) = w(x)D(x)f (2)

wheref is the drainable porosity,w(x) is the width of the
hillslope (m) at a distancex and D(x) is the average soil
depth (m) atx (see Fig. 1a).Sc defines the pore space along
the hillslope and accounts for both plan shape, through the
width function, and the profile curvature, through the soil
depth function.

Similarly, the soil moisture storageS(x,t) has been de-
fined by Troch et al. (2002) as:

S(x,t) = w(x)h(x,t)f (3)

where h(x,t) is the average height over the width of the
groundwater table atx andt . Introducing the integrated dis-
charge over the width of the hillslopeQ(x,t), the continuity
equation becomes (Troch et al.2002):

∂S

∂t
+

∂Q

∂x
−N(t)w(x) = 0 (4)

whereN(t) is the recharge to the saturated layer (m/s). The
subsurface flow rates can be described with a kinematic wave
approximation of Darcy’s law as (Troch et al., 2002):

Q = −k
S

f

∂z

∂x
(5)

wherez is the elevation of the bedrock above a given datum,
k is the soil hydraulic conductivity (m/s). In the context of
subsurface flow, it is reasonable to assume the following ini-
tial and boundary conditions:

S(x,0) = g(x) = 0 0≤ x ≤ L (6)

S(0,t)= 0 ∀t

whereg(x) represents the initial soil moisture storage along
the hillslope. Troch et al. (2002) solved Eq. (4) analytically
using the method of characteristics. The solution is given by:

S(x) =
f L

nkH
(1−

x

L
)1−nNA(x) (7)

whereA(x) is the upstream drainage area at locationx (inte-
gral from 0 tox of w(x)). This equation expresses the stor-
age profile along the hillslope in the steady-state condition.
Analytical solutions to Boussinesq’s equation are very use-
ful to understand the dynamics of subsurface flow processes
along a hillslope.
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Fig. 3. Prediction of saturation zone boundary at convergent hills-
lope (after Rezzoug et al., 2005)

3 Prediction of the saturation zone in complex hillslopes

In this study, we used the steady state analytical solution of
hillslope-storage kinematic wave equation that was presented
by Troch et al. (2002) for predicting and extending the satu-
ration zone in compound hillslopes.

Figure 3 shows a convergent hillslopes under recharge
conditions. As can be seen, many parameters like recharge
rate (N), soil depth (D), hillslopes length (L), soil hydraulic
conductivity (k), average slope (S) , profile curvature param-
eter (n), and plan curvature parameter (ω) affect the hillslope
saturation zone extension.

According to Fig. 3 any point of the hillslope which the
storage equals the storage capacity(S(x) = Sc(x)), belongs
to the saturation zone. If we call the ratio of actual storage
to storage capacity as “Relative Saturation (σ)”, one can say
that any point of the hillslope where the relative saturation
reaches one (σ ≥ 1), would be a saturation point.

The steady-state relative saturation function is now given
by Talebi et al. (2008a):

σ(x) =
S(x)

Sc(x)
= a(x)

N

T

1

|∂z/∂x|
(8)

where T=kD is soil transmissivity (m2/s) and
a(x)=A(x)/w(x)is drainage area per unit hillslope width (m).
The variableσ(x)describes the steady-state wetness of the
soil and is conceptually similar to the topographic index
ln( a

tanβ ) of Beven and Kirkby (1979), wetness index (W)

derived by O’Loughlin (1986) and Montgomery and Dietrich
(1994). The location of the saturation zone boundary can be
determined by insertingσ(x) = 1inEq. (8)orS(x) = Sc(x)
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Fig. 4. Relative saturated storage along the nine ba-
sic hillslopes for different recharge rates (solid line:
N=30 mm/day; dashed line: N=20 mm/day; dotted line:
N=10 mm/day).(k=0.0001m/s,D=2m,f =0.34,β=15◦)

and using the storage function from Eq. (7) and storage
capacity from Eq. (2), we then obtain:

f LN

nkH
(1−

xsat

L
)1−nA(xsat) = w(xsat)Df (9)

By solving the Eq. (9) numerically, the location of the sat-
uration zone boundary(xsat) could be determined. The x-
coordinatexsat, is where the mean groundwater table height
is maximum. The saturation capacity beyond the saturation
zone boundary(xsat≤ x ≤ L) depends on the relative satura-
tion at those points.

3.1 Calculation of the saturation zone length in the nine
basic complex hillslopes

In general, relative saturation in the hillslope is a determiner
of the soil saturation capacity. This parameter was also used
by Troch et al. (2002) and Talebi et al. (2008a) in their re-
search. Figure 4 shows variations of the relative saturation
along the nine basic hillslopes of Tables 1 and 2 for different
recharge rates.

According to Fig. 4 all hillslopes react to the recharge vari-
ations differently. The saturation zone occurs in a certain
recharge rate corresponding to the geometric attributes and
the soil characteristics of the hillslopes which is called “Sat-
uration Recharge Rate (SRR)”. The recharge rate that causes
the occurrence of the saturation zone in every hillslopes was
calculated for all slopes. Figure 5 shows the SRR for nine
basic of hillslopes.

The concave and convergent hillslopes are saturated very
soon. As can be seen, the SSR in divergent hillslopes
is averagely seven times more than the convergent slopes
and the SSR in convex slopes is averagely nine times
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Fig. 6. Saturation zone length (SZL) for different recharge ratios.

more than the concave slopes. For example, the SRR for
convergent-concave hillslope is 2 mm/day (minimum rate)
and it is 129 mm/day for divergent-convex hillslopes (max-
imum rate).

According to the studies on concave and straight hill-
slopes, the saturation zone in these hillslopes after satura-
tion, occurs at the lower reaches of the hillslope between the
edge of the saturated boundary and the hillslope outlet (ridge)
completely, so the saturation zone length is obtained from the
relation: SZL=L−xsat. In the case of a convex hillslope, the
saturation zone occurs in the distance between the edge of
saturation boundary and the hillslopes outlet; and close to the
ridge, the storage is less than the storage capacity, as seen in
Fig.4. The relative saturated storage profile in concave and
straight slopes is linear to parabolic and in convex slopes is
semi- ellipse.

Figure 6 depicts the SZL of all complex hillslopes for var-
ious recharge rates (10 mm/day–30 mm/day). The recharge
rate is a very effective factor in the saturation rate, for in-
stance, the convergent-concave hillslopes with recharge un-
der 20 mm/day show more reaction to the saturation rate in
comparison to straight and convergent-convex hillslopes. In
recharge rates over 20 mm/day the maximum of the SZL cor-
responds to the convex-convergent hillslopes.

In all recharge rates, the convergent hillslopes tend to sat-
urate much more than the parallel and divergent ones. SZL
in the convergent hillslopes are greater than parallel and di-
vergent hillslopes. Greater SZL corresponds to concave hill-
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Fig. 7. Relative saturated storage along the nine basic hillslopes for
different soil depthsN=10 mm/day (solid line:D=0.5 m; dashed
line: D=1 m; dotted line:D=2 m).

slopes compared to the convex ones. The Convex-divergent
hillslopes show minimum response to saturation; therefore,
in a recharge rate below 129 mm/day no saturation zone is
created. In general, occurrence of the saturation zone in
hillslopes causes an increase in pore pressure followed by
a decrease in the stability of hillslopes. Talebi et al. (2008a)
proved that the stability of the convergent hillslope is less
than the divergent ones and the same is true about the con-
cave hillslopes compared with the convex ones.

Soil depth is also an important factor affecting relative sat-
uration. Figure 7 shows the change of relative saturation and
SZL for the soil depths from 0.5 m–2 m. The less soil depth
is created the more saturation zone, because the storage ca-
pacity is decreased and the soil will become saturated faster.

An increase in the soil hydraulic conductivity as well as
the average bed rock slope yields a decrease in the saturation
zone in complex hillslopes. Changes in the bedrock slope
cause changes in the plan shape coefficientω = ±(H/L2),
then changes the relative saturation of the hillslopes. Figure 8
depicts the effect of the average bedrock slope angle on the
extension of the saturation zone .

3.2 Analytical solution for the saturation zone length in
the straight hillslopes

In straight hillslopes there is no slope variation (n = 1) and
the width function is as follows (Talebi et al., 2008a):

w(x) = w0exp(−
2ωL

H
x) (10)

wherew0is the hillslope width(m) at the upstream divide(x =

0). As a consequence, the hillslope drainage area upstream
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Fig. 8. Relative saturated storage along the nine basic hillslopes
for different bottom average bedrock slope angles (solid line:
β=25,ω=0.0047 dashed line:β=20,ω=0.0036; dotted line:β=15,
ω=0.0027).

of x becomes (Talebi et al., 2008a):

A(x) =

∫ x

0
w(u)du =

w0H

2ωL

[
1−exp(−

2ωL

H
x)

]
(11)

Note that in convex/concave hillslopes, the drainage area in
each point should be determined numerically and we cannot
product an analytical equation for calculating the saturation
zone in these slopes. The steady-state saturated storage pro-
file for straight hillslopes based on (Talebi et al., 2008a) can
be calculated as (Appendix A):

S(x) =
f Nw0

2ωk

[
1−exp(−

2ωL

H
x)

]
(12)

Dividing Eq. (12) by Eq. (2), Talebi et al. (2008a) obtained
the relative saturation function for straight hillslopes:

σ(x) =
N

2ωkD

[
exp(

2ωL

H
x)−1

]
(13)

belongs to the saturation zone.σ(x) ≥ 1 each point of the
hillslopes with equating Eq. (13) to one, we derive the satu-
ration zone length as follows:

SZL= L−
S

2ω
Ln(1+

2ωkD

N
) (14)

WhereS is the average slope (=H/L). Equation (14) ex-
presses the SZL in straight hillslopes. The SZL depends
on the recharge rate, the plan shape, the soil hydraulic con-
ductivity, the soil depth and the total hillslope length. If
solution of the Eq. (14) is negative or a complex num-
ber (no valid value), it emphasizes that the saturation zone
does not exist, so SZL is zero; otherwise, ifN > SRR=

2ωkD/[exp(2ωL2/H)−1], the solution is positive. The plan
shape parameter(ω) of straight-parallel hillslopes is zero, by
limiting ω toward zero; the Eq. (14) is changed to:

SZL= L−
kDS

N
(15)

Positive solutions of the Eq. (15) present the saturation zone
length in straight-parallel hillslopes after saturation.

4 The complex hillslope travel time in the subsurface
flow

The time of concentration has been used by some authors to
define response times of hillslopes. Ben-Zvi (1984) defined
the time of concentration as the time taken from the initiation
of rainfall to the time when the catchment discharge attains
(nearly) 0.8 of the equilibrium discharge. Beven (1982) de-
fined the time of concentration as the time at which a steady-
state flow profile is developed over the entire hillslope, as-
suming a constant input rate for a sufficient length of time.
In this paper, the time of concentration is defined as the aver-
age time required for water particles to travel from the top of
the hillslope, via the subsurface hillslope layers, to the out-
let. Aryal et al. (2005) used the Zaslavsky and Rogowski
(1969) geometry equations and derived three equations for
travel time in hillslopes with concave , convex and straight
profiles and all plan form geometries, however, in this paper,
since we have used the Evans (1980) equation for modeling
of slopes geometry, one equation is presented for all complex
hillslopes.

In a soil profile over an impermeable layer, the inter-
stitial velocity in soil pores according to Darcy’s law is
(Aryal2005):

v = k
s∗

f
(16)

where s∗ is the local slope. The profile curvature affects
slope changes and the velocity of water in soil. The local
slope for the compound hillslopes is derived from Eq. (1):

s∗
=

∣∣∣∣ dz

dx

∣∣∣∣ = n
H

L
(1−

x

L
)n−1 (17)

Putting v = dx/dt and substituting the value ofs∗ [from
Eq. (17) ] in Eq. (16) and integrating with boundst = 0 to
T , andx = 0 to xsat for travel time of the unsaturation zone,
we obtain:

T =
f L

nkH

xsat∫
0

(1−
x

L
)1−ndx =

Lf
[
(1−

xsat
L

)2−n
−1

]
nkS(n−2)

(18)

Note that when the saturation occurs over part of the lower
hillslope, the total travel time diminishes. In this case, the
overall travel time for subsurface flow is reduced by the
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travel time required to traverse the saturation zone length (see
Marani et al., 2001; Aryal et al., 2002).

The analytical Eq. (18) represents the subsurface travel
time in all complex hillslopes. The coordination of the sat-
urated zone boundary in each hillslope is a key parameter in
calculating travel time. All parameters which affect the de-
velopment of the saturation zone of the hillslopes also change
the travel time. Equation (18) expresses that the travel time of
the nine hillslopes is a function of the saturation zone length
(SZL = L−xsat), the total length (L), the effective porosity
(f ), the profile curvature parameter (n), the soil hydraulic
conductivity (k) , and the average bedrock slope (S).

The subsurface travel time in the steady-state conditions
involves the storage rate in the system, and the outlet dis-
charge. Inserting Eq. (17) into Eq. (5) gives the ratio of the
storage to the outlet discharge in this case:

S(x)

Q(x)
=

f L

nkH
(1−

x

L
)1−n (19)

This ratio for hillslopes with constant profile curvature re-
mains the same, but varies along the hillslope. Combining
Eq. (18) and Eq. (19) one can write (Talebi et al., 2008c):

T =

xsat∫
0

S(x)

Q(x)
dx (20)

The value of the storage in the system is estimated from
Eq. (7) and the outlet discharge from Eq. (5). By using
Eq. (20), we derive the travel time from the area under the
graph of S/Q along the unsaturation zone length. Both
Eqs. (18) and (20) describe the subsurface travel time in com-
plex hillslopes but Eq. (18) is simpler and avoids any calcu-
lations forS(x) andQ(x). In slopes with fixed profile cur-
vature, the ratio of the storage to the flow rate in steady-state
conditions remains constant; hence this is the unsaturation
zone length (the effective length) which influences the travel
time in these hillslopes.

4.1 The subsurface travel time in straight hillslopes

In straight hillslopes (n=1) Eq. (18) becomes:

T =
f xsat

kS
(21)

This equation presents the subsurface travel time of the
straight hillslopes after saturation.

Replacing Eq. (14) into Eq. (21) yields (Appendix B):

T =
f

2kω
Ln(1+

2ωkD

N
) (22)

As seen in Eq. (22), the subsurface travel time of the straight
hillslopes after saturation is a function depending on the
recharge rate, the plan shape, the soil hydraulic conductiv-
ity, the soil depth, the hillslope length, the soil porosity and
the bedrock slope angle.

Table 3. SZL and STT in the nine basic hillslopes (N=30 mm/day)

Hillslope Profile Plan SZL STT
Nr. Curvature Shape (m) (hr)

1 concave convergent 32 204
2 concave parallel 14 294
3 concave divergent 1 423
4 straight convergent 30 247
5 straight parallel 0 352
6 straight divergent 0 352
7 convex convergent 52 293
8 convex parallel 0 470
9 convex divergent 0 470

Equation (22) does not relate to SZL and profile curva-
ture. This equation is an extended equation of the Henderson
(1964) equation. The runoff travel time for the subsurface
flow region that was presented by Henderson and Wooding
(1964) is:

T =
f L

kS
(23)

Most researchers have used Eq. (23) for calculating subsur-
face travel time in overlands in order to predicting the subsur-
face flow hydrograph. In Eq. (23) the effect of recharge rate,
geometry and soil depth has been ignored. This equation
is only valid for the straight hillslopes before the saturation
conditions.

The Eq. (22) is simplified for straight-parallel(ω = 0) hill-
slopes to:

T =
Df

N
(24)

It can be stated that the travel time in straight-parallel hill-
slopes is a function off L/kS before saturation and is a func-
tion of Df/N after saturation develops. This concept has
also been proved by Aryal et al. (2005). They proved that the
travel time in straight-parallel hillslopes is a function only of
smd/∇q after saturation occurs, where∇q is the net change
in flux and smd is the soil moisture deficit. The relationship
between the initial soil moisture and the soil moisture deficit
is:

g(x)+smd = Df (25)

4.2 Calculation of the subsurface travel time in the nine
basic hillslopes

The travel time and SZL of the all complex hillslopes accord-
ing to the attributes in Table 1 and Table 2 are presented in
Table 3. Figure 9 represents also the variations of the SZL as
the recharge reaches 50 mm/day.

Figure 10 shows the subsurface travel time of the nine ba-
sic complex hillslope for N=50 mm/day.
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Fig. 9. Saturation zone length (SZL) of the nine basic hillslopes
(N=50 mm/day)
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Fig. 10. Subsurface travel time (STT) of the nine basic hillslopes
(N=50 mm/day)

The histograms showed in Fig. 10 and Table 3 illustrate
that the convergent hillslopes exhibit less travel time than
parallel and divergent ones and it is also more for the convex
hillslopes compared to the straight and concave hillslopes.
The travel time in divergent hillslopes is approximately dou-
ble those of convergent hillslopes.

As verified by our studies, the least travel time corresponds
to the concave-convergent hillslopes and the greatest to the
convex-divergent ones. When the saturation zone length is
increased, the length of unsaturation zone is decreased and
the effect of the surface flow is more important than the sub-
surface flow. In this situation the travel time of the subsurface
flow will be reduced.

The steady-state outflow at each point of the hillslope is
equal to:

Q(x) = NA(x) (26)

The average outflow along hillslopes would be:

Q =
1

L

∫ L

0
Q(x)dx (27)

The average subsurface flow can be obtained from Eq. (27)
for nine basic hillslopes (see Fig. 11). Figure 11 illustrates
that the average flow of the convergent hillslopes is less than
the divergent ones. Also the convex hillslopes tend to show
much more flow than the concave ones. The least flow relates
to the concave-convergent hillslope, with 0.04 m3/hr while
the highest corresponds to the convex-parallel, with 3 m3/hr .
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Fig. 11. Average subsurface flow for nine basic hillslopes
(N=30 mm/day)

Hilbert et al. (2005) also measured the water tables and
outflow rates from a drainage experiment in a laboratory
setup by two sets of linear convergent hillslopes and linear
divergent hillslopes and our results are consistence with their
results as they showed that the convergent hillslopes drain
more slowly than the divergent ones.

5 Conclusions

In this paper, we proved the hillslope-storage kinematic wave
model is suitable for investigating the response of the com-
plex hillslopes and some of our results are similar to the
Aryal et al. (2005) results in the steady state condition but
the hsB model can be also extended for unsteady state condi-
tion. Troch et al. (2003) and Talebi et al. (2008b) have used
the unsteady-state hsB model in their researches. The main
aim of the present study is to benefit from its results for the
modeling saturation zone extension in unsteady-state condi-
tion based on temporal distributions of rainfall during storms
in hillslopes in future studies. The convergent hillslopes pos-
sess less flow rate discharge in comparison to the parallel
and divergent ones, a fact admitted by the experimental re-
sults obtained by Troch et al. (2003) and Hilbert et al. (2004)
in the laboratory. In convergent hillslopes the ground wa-
ter table is higher than the divergent ones, leading to more
saturation with larger saturation zone length in contrast to
parallel and divergent hillslopes.

Since the travel time is determined along the unsaturation
zone, the saturation zone length reduces the subsurface travel
time. In hillslopes with fixed profile curvature (convergent,
parallel, divergent), the ratio of the storage to the flow rate
in steady-state conditions remains constant, hence, this is the
effective length which influences the travel time in these hill-
slopes. The maximum saturation zone length in convergent
hillslopes, it is inferred that they have the minimum effec-
tive length, with shorter subsurface travel time relative to the
divergent and parallel hillslopes.
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Any alteration in the plan shape makes change(s) in the
effective length, eventually resulting in changes in the travel
time. So the travel time is a function of the profile curva-
ture, the plan shape, and the characteristics of the soil and
recharge.

Based on our results, the convex hillslopes show smaller
saturation zone than the concave hillslopes and take greater
travel time than the straight and concave ones; whereas in
convex-convergent hillslopes due to their convergent, there
is much inclination towards saturation.

The least travel time corresponds to the concave-
convergent hillslopes, and the greatest to the convex-
divergent ones.

Appendix A

Troch et al. (2002) introduced the storage function for steady
state condition as:

S(x) =
f L

nkH
(1−

x

L
)1−nNA(x) (A1)

The storage function for straight hillslope (n = 1) is ob-
tainted:

S(x) =
f L

kH
NA(x) (A2)

By inserting the Eq. 12 in Eq. A2, we obtain:

S(x) =
f Nw0

2ωk

[
1−exp(−

2ωL

H
x)

]
(A3)

Appendix B

The relationship between SZL and the location of the satura-
tion zone boundary for straight hillslopes is:

xsat= L−SZL (B1)

The location of the saturation zone boundary from Eq. 15 is
obtained:

xsat=
S

2ω
Ln(1+

2ωkD

N
) (B2)

By inserting the Eq. B2 in Eq. 22, we obtain:

T =
f

2kω
Ln(1+

2ωkD

N
) (B3)

Equation B3 presents the subsurface travel time of the
straight hillslopes after saturation.

Edited by: N. Verhoest
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