2,476 research outputs found

    The Momentum Kernel of Gauge and Gravity Theories

    Get PDF
    We derive an explicit formula for factorizing an nn-point closed string amplitude into open string amplitudes. Our results are phrased in terms of a momentum kernel which in the limit of infinite string tension reduces to the corresponding field theory kernel. The same momentum kernel encodes the monodromy relations which lead to the minimal basis of color-ordered amplitudes in Yang-Mills theory. There are interesting consequences of the momentum kernel pertaining to soft limits of amplitudes. We also comment on surprising links between gravity and certain combinations of kinematic and color factors in gauge theory.Comment: 19 pages, 1 figur

    Localization of the SFT inspired Nonlocal Linear Models and Exact Solutions

    Full text link
    A general class of gravitational models driven by a nonlocal scalar field with a linear or quadratic potential is considered. We study the action with an arbitrary analytic function F(□)F(\Box), which has both simple and double roots. The way of localization of nonlocal Einstein equations is generalized on models with linear potentials. Exact solutions in the Friedmann-Robertson-Walker and Bianchi I metrics are presented.Comment: 20 pages, 3 figures, published in the proceedings of the VIII International Workshop "Supersymmetries and Quantum Symmetries" (SQS'09), Dubna, Russia, July 29 - August 3, 2009, http://theor.jinr.ru/~sqs09

    On the dynamical generation of the Maxwell term and scale invariance

    Full text link
    Gauge theories with no Maxwell term are investigated in various setups. The dynamical generation of the Maxwell term is correlated to the scale invariance properties of the system. This is discussed mainly in the cases where the gauge coupling carries dimensions. The term is generated when the theory contains a scale explicitly, when it is asymptotically free and in particular also when the scale invariance is spontaneously broken. The terms are not generated when the scale invariance is maintained. Examples studied include the large NN limit of the CPN−1CP^{N-1} model in (2+ϵ)(2+\epsilon) dimensions, a 3D gauged ϕ6\phi^6 vector model and its supersymmetric extension. In the latter case the generation of the Maxwell term at a fixed point is explored. The phase structure of the d=3d=3 case is investigated in the presence of a Chern-Simons term as well. In the supersymmetric ϕ6\phi^6 model the emergence of the Maxwell term is accompanied by the dynamical generation of the Chern-Simons term and its multiplet and dynamical breaking of the parity symmetry. In some of the phases long range forces emerge which may result in logarithmic confinement. These include a dilaton exchange which plays a role also in the case when the theory has no gauge symmetry. Gauged Lagrangian realizations of the 2D coset models do not lead to emergent Maxwell terms. We discuss a case where the gauge symmetry is anomalous.Comment: 38 pages, 4 figures; v2 slightly improved, typos fixed, references added, published versio

    Primordial Black Holes: sirens of the early Universe

    Full text link
    Primordial Black Holes (PBHs) are, typically light, black holes which can form in the early Universe. There are a number of formation mechanisms, including the collapse of large density perturbations, cosmic string loops and bubble collisions. The number of PBHs formed is tightly constrained by the consequences of their evaporation and their lensing and dynamical effects. Therefore PBHs are a powerful probe of the physics of the early Universe, in particular models of inflation. They are also a potential cold dark matter candidate.Comment: 21 pages. To be published in "Quantum Aspects of Black Holes", ed. X. Calmet (Springer, 2014

    Inflammatory cytokines and biofilm production sustain Staphylococcus aureus outgrowth and persistence: A pivotal interplay in the pathogenesis of Atopic Dermatitis

    Get PDF
    Individuals with Atopic dermatitis (AD) are highly susceptible to Staphylococcus aureus colonization. However, the mechanisms driving this process as well as the impact of S. aureus in AD pathogenesis are still incompletely understood. In this study, we analysed the role of biofilm in sustaining S. aureus chronic persistence and its impact on AD severity. Further we explored whether key inflammatory cytokines overexpressed in AD might provide a selective advantage to S. aureus. Results show that the strength of biofilm production by S. aureus correlated with the severity of the skin lesion, being significantly higher (P < 0.01) in patients with a more severe form of the disease as compared to those individuals with mild AD. Additionally, interleukin (IL)-β and interferon γ (IFN-γ), but not interleukin (IL)-6, induced a concentration-dependent increase of S. aureus growth. This effect was not observed with coagulase-negative staphylococci isolated from the skin of AD patients. These findings indicate that inflammatory cytokines such as IL1-β and IFN-γ, can selectively promote S. aureus outgrowth, thus subverting the composition of the healthy skin microbiome. Moreover, biofilm production by S. aureus plays a relevant role in further supporting chronic colonization and disease severity, while providing an increased tolerance to antimicrobials

    Scattering Theory and PT\mathcal{P}\mathcal{T}-Symmetry

    Full text link
    We outline a global approach to scattering theory in one dimension that allows for the description of a large class of scattering systems and their P\mathcal{P}-, T\mathcal{T}-, and PT\mathcal{P}\mathcal{T}-symmetries. In particular, we review various relevant concepts such as Jost solutions, transfer and scattering matrices, reciprocity principle, unidirectional reflection and invisibility, and spectral singularities. We discuss in some detail the mathematical conditions that imply or forbid reciprocal transmission, reciprocal reflection, and the presence of spectral singularities and their time-reversal. We also derive generalized unitarity relations for time-reversal-invariant and PT\mathcal{P}\mathcal{T}-symmetric scattering systems, and explore the consequences of breaking them. The results reported here apply to the scattering systems defined by a real or complex local potential as well as those determined by energy-dependent potentials, nonlocal potentials, and general point interactions.Comment: Slightly expanded revised version, 38 page

    The semi-classical expansion and resurgence in gauge theories: new perturbative, instanton, bion, and renormalon effects

    Get PDF
    We study the dynamics of four dimensional gauge theories with adjoint fermions for all gauge groups, both in perturbation theory and non-perturbatively, by using circle compactification with periodic boundary conditions for the fermions. There are new gauge phenomena. We show that, to all orders in perturbation theory, many gauge groups are Higgsed by the gauge holonomy around the circle to a product of both abelian and nonabelian gauge group factors. Non-perturbatively there are monopole-instantons with fermion zero modes and two types of monopole-anti-monopole molecules, called bions. One type are "magnetic bions" which carry net magnetic charge and induce a mass gap for gauge fluctuations. Another type are "neutral bions" which are magnetically neutral, and their understanding requires a generalization of multi-instanton techniques in quantum mechanics - which we refer to as the Bogomolny-Zinn-Justin (BZJ) prescription - to compactified field theory. The BZJ prescription applied to bion-anti-bion topological molecules predicts a singularity on the positive real axis of the Borel plane (i.e., a divergence from summing large orders in peturbation theory) which is of order N times closer to the origin than the leading 4-d BPST instanton-anti-instanton singularity, where N is the rank of the gauge group. The position of the bion--anti-bion singularity is thus qualitatively similar to that of the 4-d IR renormalon singularity, and we conjecture that they are continuously related as the compactification radius is changed. By making use of transseries and Ecalle's resurgence theory we argue that a non-perturbative continuum definition of a class of field theories which admit semi-classical expansions may be possible.Comment: 112 pages, 7 figures; v2: typos corrected, discussion of supersymmetric models added at the end of section 8.1, reference adde

    Structure in 6D and 4D N=1 supergravity theories from F-theory

    Get PDF
    We explore some aspects of 4D supergravity theories and F-theory vacua that are parallel to structures in the space of 6D theories. The spectrum and topological terms in 4D supergravity theories correspond to topological data of F-theory geometry, just as in six dimensions. In particular, topological axion-curvature squared couplings appear in 4D theories; these couplings are characterized by vectors in the dual to the lattice of axion shift symmetries associated with string charges. These terms are analogous to the Green-Schwarz terms of 6D supergravity theories, though in 4D the terms are not generally linked with anomalies. We outline the correspondence between F-theory topology and data of the corresponding 4D supergravity theories. The correspondence of geometry with structure in the low-energy action illuminates topological aspects of heterotic-F-theory duality in 4D as well as in 6D. The existence of an F-theory realization also places geometrical constraints on the 4D supergravity theory in the large-volume limit.Comment: 63 page

    Deletion mapping of chromosome 16q in hepatocellular carcinoma

    Get PDF
    Hepatocellular carcinoma (HCC) frequently shows an allelic imbalance (AI) on chromosome 16q. In order to define the commonly affected regions on chromosome 16q, we assessed AI studies in 41 HCCs using a panel of 37 microsatellite markers. Thirty-five cases (85%) showed AI at one or more loci. Among the 35 cases with AI, 21 cases showed multiple AI, suggesting the wide scope of deletion on the long arm of chromosome 16, and the remaining 14 cases showed partial AI. Detailed deletion mapping identified two independent commonly deleted regions on this chromosome arm. These included the D16S3106 locus and D16S498 locus. In conclusion, we have demonstrated frequent AI on 16q in HCCs and identified two loci with frequent AI, which may harbour new tumour suppressor genes.ope

    Novel tumor suppressive function of Smad4 in serum starvation-induced cell death through PAK1–PUMA pathway

    Get PDF
    DPC4 (deleted in pancreatic cancer 4)/Smad4 is an essential factor in transforming growth factor (TGF)-β signaling and is also known as a frequently mutated tumor suppressor gene in human pancreatic and colon cancer. However, considering the fact that TGF-β can contribute to cancer progression through transcriptional target genes, such as Snail, MMPs, and epithelial–mesenchymal transition (EMT)-related genes, loss of Smad4 in human cancer would be required for obtaining the TGF-β signaling-independent advantage, which should be essential for cancer cell survival. Here, we provide the evidences about novel role of Smad4, serum-deprivation-induced apoptosis. Elimination of serum can obviously increase the Smad4 expression and induces the cell death by p53-independent PUMA induction. Instead, Smad4-deficient cells show the resistance to serum starvation. Induced Smad4 suppresses the PAK1, which promotes the PUMA destabilization. We also found that Siah-1 and pVHL are involved in PAK1 destabilization and PUMA stabilization. In fact, Smad4-expressed cancer tissues not only show the elevated expression of PAK1, but also support our hypothesis that Smad4 induces PUMA-mediated cell death through PAK1 suppression. Our results strongly suggest that loss of Smad4 renders the resistance to serum-deprivation-induced cell death, which is the TGF-β-independent tumor suppressive role of Smad4
    • …
    corecore