29 research outputs found

    Low-risk susceptibility alleles in 40 human breast cancer cell lines

    Get PDF
    Background: Low-risk breast cancer susceptibility alleles or SNPs confer only modest breast cancer risks ranging from just over 1.0 to 1.3 fold. Yet, they are common among most populations and therefore are involved in the development of essentially all breast cancers. The mechanism by which the low-risk SNPs confer breast cancer risks is currently unclear. The breast cancer association consortium BCAC has hypothesized that the low-risk SNPs modulate expression levels of nearby located genes. Methods: Genotypes of five low-risk SNPs were determined for 40 human breast cancer cell lines, by direct sequencing of PCR-amplified genomic templates. We have analyzed expression of the four genes that are located nearby the low-risk SNPs, by using real-time RT-PCR and Human Exon microarrays. Results: The SNP genotypes and additional phenotypic data on the breast cancer cell lines are presented. We did not detect any effect of the SNP genotypes on expression levels of the nearby-located genes MAP3K1, FGFR2, TNRC9 and LSP1. Conclusion: The SNP genotypes provide a base line for functional studies in a well-characterized cohort of 40 human breast cancer cell lines. Our expression analyses suggest that a putative disease mechanism through gene expression modulation is not operative in breast cancer cell lines

    Influence of pharmacogenetics on response and toxicity in breast cancer patients treated with doxorubicin and cyclophosphamide

    Get PDF
    BACKGROUND: Doxorubicin and cyclophosphamide (AC) therapy is an effective treatment for early-stage breast cancer. Doxorubicin is a substrate for ABCB1 and SLC22A16 transporters. Cyclophosphamide is a prodrug that requires oxidation to 4-hydroxy-cyclophosphamide, which yields a cytotoxic alkylating agent. The initial oxidation is catalysed by cytochrome P450 enzymes including CYP2B6, CYP2C9, CYP2C19 and CYP3A5. Polymorphic variants of the genes coding for these enzymes and transporters have been identified, which may influence the systemic pharmacology of the two drugs. It is not known whether this genetic variation has an impact on the efficacy or toxicity of AC therapy. METHODS: Germ line DNA samples from 230 patients with breast cancer on AC therapy were genotyped for the following SNPs: ABCB1 C1236T, G2677T/A and C3435T, SLC22A16 A146G, T312C, T755C and T1226C, CYP2B6*2, *8, *9, *3, *4 and *5, CYP2C9*2 and *3, CYP3A5*3 and CYP2C19*2. Clinical data on survival, toxicity, demographics and pathology were collated. RESULTS: A lower incidence of dose delay, indicative of less toxicity, was seen in carriers of the SLC22A16 A146G, T312C, T755C variants. In contrast, a higher incidence of dose delay was seen in carriers of the SLC22A16 1226C, CYP2B6*2 and CYP2B6*5 alleles. The ABCB1 2677A, CYP2B6*2, CYP 2B6*8, CYP 2B6*9, CYP 2B6*4 alleles were associated with a worse outcome. CONCLUSION: Variant alleles in the ABCB1, SLC22A16 and CYP2B6 genes are associated with response to AC therapy in the treatment of breast cancer

    Gene expression analyses in breast cancer epidemiology: the Norwegian Women and Cancer postgenome cohort study

    Get PDF
    Introduction The introduction of high-throughput technologies, also called -omics technologies, into epidemiology has raised the need for high-quality observational studies to reduce several sources of error and bias. Methods The Norwegian Women and Cancer (NOWAC) postgenome cohort study consists of approximately 50,000 women born between 1943 and 1957 who gave blood samples between 2003 and 2006 and filled out a two-page questionnaire. Blood was collected in such a way that RNA is preserved and can be used for gene expression analyses. The women are part of the NOWAC study consisting of 172,471 women 30 to 70 years of age at recruitment from 1991 to 2006 who answered one to three questionnaires on diet, medication use, and lifestyle. In collaboration with the Norwegian Breast Cancer Group, every NOWAC participant born between 1943 and 1957 who is admitted to a collaborating hospital for a diagnostic biopsy or for surgery of breast cancer will be asked to donate a tumor biopsy and two blood samples. In parallel, at least three controls are approached for each breast cancer case in order to obtain blood samples from at least two controls per case. The controls are drawn at random from NOWAC matched by time of follow-up and age. In addition, 400 normal breast tissues as well as blood samples will be collected among healthy women participating at the Norwegian Mammography Screening program at the Breast Imaging Center at the University Hospital of North-Norway, Tromsø. Results The NOWAC postgenome cohort offers a unique opportunity (a) to study blood-derived gene expression profiles as a diagnostic test for breast cancer in a nested case-control design with adjustment for confounding factors related to different exposures, (b) to improve the reliability and accuracy of this approach by adjusting for an individual's genotype (for example, variants in genes coding for hormone and drug-metabolizing and detoxifying enzymes), (c) to study gene expression profiles from peripheral blood as surrogate tissue to biomonitor defined exposure (for example, hormone) and its association with disease risk (that is, breast cancer), and (d) to study gene variants (single nucleotide polymorphisms and copy number variations) and environmental exposure (endogenous and exogenous hormones) and their influence on the incidence of different molecular subtypes of breast cancer. Conclusion The NOWAC postgenome cohort combining a valid epidemiological approach with richness of biological samples should make an important contribution to the study of the etiology and system biology of breast cancer

    Expression levels of uridine 5'-diphospho-glucuronosyltransferase genes in breast tissue from healthy women are associated with mammographic density

    Get PDF
    Introduction Mammographic density (MD), as assessed from film screen mammograms, is determined by the relative content of adipose, connective and epithelial tissue in the female breast. In epidemiological studies, a high percentage of MD confers a four to six fold risk elevation of developing breast cancer, even after adjustment for other known breast cancer risk factors. However, the biologic correlates of density are little known. Methods Gene expression analysis using whole genome arrays was performed on breast biopsies from 143 women; 79 women with no malignancy (healthy women) and 64 newly diagnosed breast cancer patients, both included from mammographic centres. Percent MD was determined using a previously validated, computerized method on scanned mammograms. Significance analysis of microarrays (SAM) was performed to identify genes influencing MD and a linear regression model was used to assess the independent contribution from different variables to MD. Results SAM-analysis identified 24 genes differentially expressed between samples from breasts with high and low MD. These genes included three uridine 5'-diphospho-glucuronosyltransferase (UGT) genes and the oestrogen receptor gene (ESR1). These genes were down-regulated in samples with high MD compared to those with low MD. The UGT gene products, which are known to inactivate oestrogen metabolites, were also down-regulated in tumour samples compared to samples from healthy individuals. Several single nucleotide polymorphisms (SNPs) in the UGT genes associated with the expression of UGT and other genes in their vicinity were identified. Conclusions Three UGT enzymes were lower expressed both in breast tissue biopsies from healthy women with high MD and in biopsies from newly diagnosed breast cancers. The association was strongest amongst young women and women using hormonal therapy. UGT2B10 predicts MD independently of age, hormone therapy and parity. Our results indicate that down-regulation of UGT genes in women exposed to female sex hormones is associated with high MD and might increase the risk of breast cancer

    CpG-island methylation of the ER promoter in colorectal cancer: analysis of micrometastases in lymph nodes from UICC stage I and II patients

    Get PDF
    Patients with UICC stage II colorectal cancer (CRC) have a risk of approximately 20% to develop disease recurrence after tumour resection. The presence and significance of micrometastases for locoregional recurrence in these patients lacking histopathological lymph node involvement on routine stained HE sections is undefined. Oestrogen receptor (ER) promoter methylation has earlier been identified in CRC. Therefore, we evaluated the methylation status of the ER promoter in lymph nodes from 49 patients with CRC UICC stage I and II as a molecular marker of micrometastases and predictor of local recurrence. DNA from 574 paraffin-embedded lymph nodes was isolated and treated with bisulphite. For the detection of methylated ER promoter sequences, quantitative real-time methylation-specific PCR was used. Of the 49 patients tested, 15 (31%) had ER methylation-positive lymph nodes. Thirteen of those (86%) remained disease free and two (14%) developed local recurrence. In the resected lymph nodes of 34 of the 49 patients (69%), no ER promoter methylation could be detected and none of these patients experienced a local relapse. The methylation status of the ER promoter in lymph nodes of UICC stage I and II CRC patients may be a useful marker for the identification of patients at a high risk for local recurrence
    corecore