49 research outputs found

    Abnormal spatial diffusion of Ca2+ in F508del-CFTR airway epithelial cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In airway epithelial cells, calcium mobilization can be elicited by selective autocrine and/or paracrine activation of apical or basolateral membrane heterotrimeric G protein-coupled receptors linked to phospholipase C (PLC) stimulation, which generates inositol 1,4,5-trisphosphate (IP<sub>3</sub>) and 1,2-diacylglycerol (DAG) and induces Ca<sup>2+ </sup>release from endoplasmic reticulum (ER) stores.</p> <p>Methods</p> <p>In the present study, we monitored the cytosolic Ca<sup>2+ </sup>transients using the UV light photolysis technique to uncage caged Ca<sup>2+ </sup>or caged IP<sub>3 </sub>into the cytosol of loaded airway epithelial cells of cystic fibrosis (CF) and non-CF origin. We compared in these cells the types of Ca<sup>2+ </sup>receptors present in the ER, and measured their Ca<sup>2+ </sup>dependent activity before and after correction of F508del-CFTR abnormal trafficking either by low temperature or by the pharmacological corrector miglustat (N-butyldeoxynojirimycin).</p> <p>Results</p> <p>We showed reduction of the inositol 1,4,5-trisphosphate receptors (IP<sub>3</sub>R) dependent-Ca<sup>2+ </sup>response following both correcting treatments compared to uncorrected cells in such a way that Ca<sup>2+ </sup>responses (CF+treatment <it>vs </it>wild-type cells) were normalized. This normalization of the Ca<sup>2+ </sup>rate does not affect the activity of Ca<sup>2+</sup>-dependent chloride channel in miglustat-treated CF cells. Using two inhibitors of IP<sub>3</sub>R1, we observed a decrease of the implication of IP<sub>3</sub>R1 in the Ca<sup>2+ </sup>response in CF corrected cells. We observed a similar Ca<sup>2+ </sup>mobilization between CF-KM4 cells and CFTR-cDNA transfected CF cells (CF-KM4-reverted). When we restored the F508del-CFTR trafficking in CFTR-reverted cells, the specific IP<sub>3</sub>R activity was also reduced to a similar level as in non CF cells. At the structural level, the ER morphology of CF cells was highly condensed around the nucleus while in non CF cells or corrected CF cells the ER was extended at the totality of cell.</p> <p>Conclusion</p> <p>These results suggest reversal of the IP<sub>3</sub>R dysfunction in F508del-CFTR epithelial cells by correction of the abnormal trafficking of F508del-CFTR in cystic fibrosis cells. Moreover, using CFTR cDNA-transfected CF cells, we demonstrated that abnormal increase of IP<sub>3</sub>R Ca<sup>2+ </sup>release in CF human epithelial cells could be the consequence of F508del-CFTR retention in ER compartment.</p

    Contrast medium-induced nephropathy. Aspects on incidence, consequences, risk factors and prevention

    Get PDF
    Contrast media-induced nephropathy (CIN) is a well-known complication of radiological examinations employing iodine contrast media (I-CM). The rapid development and frequent use of coronary interventions and multi-channel detector computed tomography with concomitant administration of relatively large doses of I-CM has contributed to an increasing number of CIN cases during the last few years. Reduced renal function, especially when caused by diabetic nephropathy or renal arteriosclerosis, in combination with dehydration, congestive heart failure, hypotension, and administration of nephrotoxic drugs are risk factors for the development of CIN. When CM-based examinations cannot be replaced by other techniques in patients at risk of CIN, focus should be directed towards analysis of number and type of risk factors, adequate estimation of GFR, institution of proper preventive measures including hydration and post-procedural observation combined with surveillance of serum creatinine for 1-3 days. For the radiologist, there are several steps to consider in order to minimise the risk for CIN: use of “low-“ or “iso-osmolar” I-CM and dosing the I-CM in relation to GFR and body weight being the most important as well as utilizing radiographic techniques to keep the I-CM dose in gram iodine as low as possible below the numerical value of estimated GFR. There is as yet no pharmacological prevention that has been proven to be effective

    Loss of estrogen receptor β decreases mitochondrial energetic potential and increases thrombogenicity of platelets in aged female mice

    Get PDF
    Platelets derived from aged (reproductively senescent) female mice with genetic deletion of estrogen receptor beta (βER) are more thrombogenic than those from age-matched wild-type (WT) mice. Intracellular processes contributing to this increased thrombogenicity are not known. Experiments were designed to identify subcellular localization of estrogen receptors and evaluate both glycolytic and mitochondrial energetic processes which might affect platelet activation. Platelets and blood from aged (22–24 months) WT and estrogen receptor β knockout (βERKO) female mice were used in this study. Body, spleen weight, and serum concentrations of follicle-stimulating hormone and 17β-estradiol were comparable between WT and βERKO mice. Number of spontaneous deaths was greater in the βERKO colony (50% compared to 30% in WT) over the course of 24 months. In resting (nonactivated) platelets, estrogen receptors did not appear to colocalize with mitochondria by immunostaining. Lactate production and mitochondrial membrane potential of intact platelets were similar in both groups of mice. However, activities of NADH dehydrogenase, cytochrome bc1 complex, and cytochrome c oxidase of the electron transport chain were reduced in mitochondria isolated from platelets from βERKO compared to WT mice. There were a significantly higher number of phosphatidylserine-expressing platelet-derived microvesicles in the plasma and a greater thrombin-generating capacity in βERKO compared to WT mice. These results suggest that deficiencies in βER affect energy metabolism of platelets resulting in greater production of circulating thrombogenic microvesicles and could potentially explain increased predisposition to thromboembolism in some elderly females

    A meta-analysis of N-acetylcysteine in contrast-induced nephrotoxicity: unsupervised clustering to resolve heterogeneity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Meta-analyses of N-acetylcysteine (NAC) for preventing contrast-induced nephrotoxicity (CIN) have led to disparate conclusions. Here we examine and attempt to resolve the heterogeneity evident among these trials.</p> <p>Methods</p> <p>Two reviewers independently extracted and graded the data. Limiting studies to randomized, controlled trials with adequate outcome data yielded 22 reports with 2746 patients.</p> <p>Results</p> <p>Significant heterogeneity was detected among these trials (<it>I</it><sup>2 </sup>= 37%; <it>p </it>= 0.04). Meta-regression analysis failed to identify significant sources of heterogeneity. A modified L'Abbé plot that substituted groupwise changes in serum creatinine for nephrotoxicity rates, followed by model-based, unsupervised clustering resolved trials into two distinct, significantly different (<it>p </it>< 0.0001) and homogeneous populations (<it>I</it><sup>2 </sup>= 0 and <it>p </it>> 0.5, for both). Cluster 1 studies (<it>n </it>= 18; 2445 patients) showed no benefit (relative risk (RR) = 0.87; 95% confidence interval (CI) 0.68–1.12, <it>p </it>= 0.28), while cluster 2 studies (<it>n </it>= 4; 301 patients) indicated that NAC was highly beneficial (RR = 0.15; 95% CI 0.07–0.33, <it>p </it>< 0.0001). Benefit in cluster 2 was unexpectedly associated with NAC-induced decreases in creatinine from baseline (<it>p </it>= 0.07). Cluster 2 studies were relatively early, small and of lower quality compared with cluster 1 studies (<it>p </it>= 0.01 for the three factors combined). Dialysis use across all studies (five control, eight treatment; <it>p </it>= 0.42) did not suggest that NAC is beneficial.</p> <p>Conclusion</p> <p>This meta-analysis does not support the efficacy of NAC to prevent CIN.</p

    Mediastinal Masses

    No full text
    The mediastinum is defined as the thoracic region limited by the pleural spaces laterally, the ster- num anteriorly, the vertebral column posteriorly, the thoracic inlet superiorly, and the diaphragm inferiorly. The mediastinum contains different types of tissue including the thymus gland, part of trachea and esophagus, the great vessels, the heart, lymph nodes, fat, and nerves. Mediastinal masses can derive from each of those tissue and can be malformative, neoplastic, or infective
    corecore