226 research outputs found
Prediction Tools for Unfavourable Outcomes in Clostridium difficile Infection: A Systematic Review
CONTEXT: Identifying patients at risk for adverse outcomes of Clostridium difficile infection (CDI), including recurrence and death, will become increasingly important as novel therapies emerge, which are more effective than traditional approaches but very expensive. Clinical prediction rules (CPRs) can improve the accuracy of medical decision-making. Several CPRs have been developed for CDI, but none has gained a widespread acceptance. METHODS: We systematically reviewed studies describing the derivation or validation of CPRs for unfavourable outcomes of CDI, in medical databases (Medline, Embase, PubMed, Web of Science and Cochrane) and abstracts of conferences. RESULTS: Of 2945 titles and abstracts screened, 13 studies on the derivation of a CPR were identified: two on recurrences, five on complications (including mortality), five on mortality alone and one on response to treatment. Two studies on the validation of different severity indices were also retrieved. Most CPRs were developed as secondary analyses using cohorts assembled for other purposes. CPRs presented several methodological limitations that could explain their limited use in clinical practice. Except for leukocytosis, albumin and age, there was much heterogeneity in the variables used, and most studies were limited by small sample sizes. Eight models used a retrospective design. Only four studies reported the incidence of the outcome of interest, even if this is essential to evaluate the potential usefulness of a model in other populations. Only five studies performed multivariate analyses to adjust for confounders. CONCLUSIONS: The lack of weighing variables, of validation, calibration and measures of reproducibility, the weak validities and performances when assessed, and the absence of sensitivity analyses, all led to suboptimal quality and debatable utility of those CPRs. Evidence-based tools developed through appropriate prospective cohorts would be more valuable for clinicians than empirically-developed CPRs
Influenza virus infection among pediatric patients reporting diarrhea and influenza-like illness
<p>Abstract</p> <p>Background</p> <p>Influenza is a major cause of morbidity and hospitalization among children. While less often reported in adults, gastrointestinal symptoms have been associated with influenza in children, including abdominal pain, nausea, vomiting, and diarrhea.</p> <p>Methods</p> <p>From September 2005 and April 2008, pediatric patients in Indonesia presenting with concurrent diarrhea and influenza-like illness were enrolled in a study to determine the frequency of influenza virus infection in young patients presenting with symptoms less commonly associated with an upper respiratory tract infection (URTI). Stool specimens and upper respiratory swabs were assayed for the presence of influenza virus.</p> <p>Results</p> <p>Seasonal influenza A or influenza B viral RNA was detected in 85 (11.6%) upper respiratory specimens and 21 (2.9%) of stool specimens. Viable influenza B virus was isolated from the stool specimen of one case. During the time of this study, human infections with highly pathogenic avian influenza A (H5N1) virus were common in the survey area. However, among 733 enrolled subjects, none had evidence of H5N1 virus infection.</p> <p>Conclusions</p> <p>The detection of influenza viral RNA and viable influenza virus from stool suggests that influenza virus may be localized in the gastrointestinal tract of children, may be associated with pediatric diarrhea and may serve as a potential mode of transmission during seasonal and epidemic influenza outbreaks.</p
The Genetics and Genomics of Virus Resistance in Maize
Viruses cause significant diseases on maize worldwide. Intensive agronomic practices, changes in vector distribution, and the introduction of vectors and viruses into new areas can result in emerging disease problems. Because deployment of resistant hybrids and cultivars is considered to be both economically viable and environmentally sustainable, genes and quantitative trait loci for most economically important virus diseases have been identified. Examination of multiple studies indicates the importance of regions of maize chromosomes 2, 3, 6, and 10 in virus resistance. An understanding of the molecular basis of virus resistance in maize is beginning to emerge, and two genes conferring resistance to sugarcane mosaic virus, Scmv1 and Scmv2, have been cloned and characterized. Recent studies provide hints of other pathways and genes critical to virus resistance in maize, but further work is required to determine the roles of these in virus susceptibility and resistance. This research will be facilitated by rapidly advancing technologies for functional analysis of genes in maize
Mechanically-Controlled Binary Conductance Switching of a Single-Molecule Junction
Molecular-scale components are expected to be central to nanoscale electronic
devices. While molecular-scale switching has been reported in atomic quantum
point contacts, single-molecule junctions provide the additional flexibility of
tuning the on/off conductance states through molecular design. Thus far,
switching in single-molecule junctions has been attributed to changes in the
conformation or charge state of the molecule. Here, we demonstrate reversible
binary switching in a single-molecule junction by mechanical control of the
metal-molecule contact geometry. We show that 4,4'-bipyridine-gold
single-molecule junctions can be reversibly switched between two conductance
states through repeated junction elongation and compression. Using
first-principles calculations, we attribute the different measured conductance
states to distinct contact geometries at the flexible but stable N-Au bond:
conductance is low when the N-Au bond is perpendicular to the conducting
pi-system, and high otherwise. This switching mechanism, inherent to the
pyridine-gold link, could form the basis of a new class of
mechanically-activated single-molecule switches
Low Clinical Burden of 2009 Pandemic Influenza A (H1N1) Infection during Pregnancy on the Island of La RΓ©union
BACKGROUND: Pregnant women have been identified as a group at risk, both for respiratory complications than for the admissions to the Intensive Care Unit (ICU) during the 2009 H1N1 influenza pandemic (pdm). The purpose of this prospective register-based cohort-study was to characterize the clinical virulence of the pdm (H1N1/09)v during pregnancy in La RΓ©union. METHODS/PRINCIPAL FINDINGS: Over a twelve-week pdm wave (13 July to 3 October 2009), 294 pregnant women presented with an influenza-like illness (ILI) to one of the three maternity departments of the South Reunion area, Indian Ocean. Out of these, 278 were checked by RT-PCR for influenza viruses (157 positive and 121 negative, of whom, 141 with pdm flu and 132 with ILIs of non pdm origin, 5 untyped). The median body temperature was higher in women experiencing pdm flu than in those with non pdm ILI (38.9 degrees C versus 38.3 degrees C, P<0.0001), without evidence linked to circulating viremia. Oseltamivir was given for 86% of pdm flu cases in a median time inferior than 48 hrs (range 0-7 days). The hospitalization rate for pdm flu was of 60% and not associated with underlying conditions. Six viral pneumonia and fourteen asthma attacks were observed among 84 hospitalized pdm flu cases, of whom, only one led to the ICU for an acute lung injury. No maternal death occurred during the pdm wave. None adverse pregnancy outcome was associated with pdm flu. No congenital birth defect, nor early-onset neonatal influenza infection was attributable to pdm flu exposure. CONCLUSIONS/SIGNIFICANCE: This report mitigates substantially the presumed severity of pandemic H1N1/09 influenza infection during pregnancy. The reasons for which the clinical burden of H1N1/09 influenza virus may differ worldwide raise questions about a differential local viral-strain effect and public health preparedness, notably in timely access to special care and antiviral treatments
Advances in Pediatric Neurovirology
Viral infections of the pediatric central nervous system (CNS) encompass a broad spectrum of both perinatally and postnatally acquired diseases with potentially devastating effects on the developing brain. In children, viral infections have been associated with chronic encephalopathy, encephalitis, demyelinating disease, tumors, and epilepsy. Older diagnostic techniques of biopsy, viral culture, electron microscopy, gel-based polymerase chain reaction (PCR), and viral titer quantification are being replaced with more rapid, sensitive, and specific real-time and microarray-based PCR technologies. Advances in neuroimaging technologies have provided for earlier recognition of CNS injury without elucidation of specific viral etiology. Although the mainstay therapy of many pediatric neurovirologic diseases, aside from HIV, includes intravenous acyclovir, much work is being done to develop novel antiviral immunotherapies aimed at both treating and preventing pediatric CNS viral disease
Differential Modulation of TCF/LEF-1 Activity by the Soluble LRP6-ICD
The canonical Wnt/Ξ²-catenin (Wnt) pathway is a master transcriptional regulatory signaling pathway that controls numerous biological processes including proliferation and differentiation. As such, transcriptional activity of the Wnt pathway is tightly regulated and/or modulated by numerous proteins at the level of the membrane, cytosol and/or nucleus. In the nucleus, transcription of Wnt target genes by TCF/LEF-1 is repressed by the long Groucho/TLE co-repressor family. However, a truncated member of the Groucho/TLE family, amino terminal enhancer of Split (AES) can positively modulate TCF/LEF-1 activity by antagonizing long Groucho/TLE members in a dominant negative manner. We have previously shown the soluble intracellular domain of the LRP6 receptor, a receptor required for activation of the Wnt pathway, can positively regulate transcriptional activity within the Wnt pathway. In the current study, we show the soluble LRP6 intracellular domain (LRP6-ICD) can also translocate to the nucleus in CHO and HEK 293T cells and in contrast to cytosolic LRP6-ICD; nuclear LRP6-ICD represses TCF/LEF-1 activity. In agreement with previous reports, we show AES enhances TCF/LEF-1 mediated reporter transcription and further we demonstrate that AES activity is spatially regulated in HEK 293T cells. LRP6-ICD interacts with AES exclusively in the nucleus and represses AES mediated TCF/LEF-1 reporter transcription. These results suggest that LRP6-ICD can differentially modulate Wnt pathway transcriptional activity depending upon its subcellular localization and differential protein-protein interactions
Novel roles of the chemorepellent axon guidance molecule RGMa in cell migration and adhesion
The repulsive guidance molecule A (RGMa) is a contact-mediated axon guidance molecule that has significant roles in central nervous system (CNS) development. Here we have examined whether RGMa has novel roles in cell migration and cell adhesion outside the nervous system. RGMa was found to stimulate cell migration from Xenopus animal cap explants in a neogenin-dependent and BMP-independent manner. RGMa also stimulated the adhesion of Xenopus animal cap cells, and this adhesion was dependent on neogenin and independent of calcium. To begin to functionally characterize the role of specific domains in RGMa, we assessed the migratory and adhesive activities of deletion mutants. RGMa lacking the partial von Willebrand factor type D (vWF) domain preferentially perturbed cell adhesion, while mutants lacking the RGD motif affected cell migration. We also revealed that manipulating the levels of RGMa in vivo caused major migration defects during Xenopus gastrulation. We have revealed here novel roles of RGMa in cell migration and adhesion and demonstrated that perturbations to the homeostasis of RGMa expression can severely disrupt major morphogenetic events. These results have implications for understanding the role of RGMa in both health and disease
- β¦