37 research outputs found

    The Relationship between Dioxin-Like Polychlorobiphenyls and IGF-I Serum Levels in Healthy Adults: Evidence from a Cross-Sectional Study

    Get PDF
    OBJECTIVE: Insulin-like growth factor I (IGF-I) and dioxin-like polychlorobiphenyls (DL-PCBs) have been associated with the pathogenesis of several diseases like cancer, diabetes and growth disorders. Because it has been suggested that organohalogenated contaminants could influence IGF-I levels in adults, the potential relationship between DL-PCBs and IGF-I serum levels was studied in 456 healthy adults from a representative sample of the general population of the Canary Islands (Spain). DESIGN: Free circulating serum levels of IGF-I and IGFBP-3 were measured through an ELISA methodology, while the serum levels of the 12 DL-PCBs congeners (IUPAC numbers # 77, 81, 105, 114, 118, 123, 126, 156, 157, 167, 169, and 189) were measured by gas chromatography/mass spectrometry (GC-MS). RESULTS: DL-PCBs 156 and 167, Total DL-PCBs body burden (∑PCBs: sum over the 12 measured DL-PCBs), and Total toxic burden (in terms of toxic equivalence to dioxins: ∑TEQs) showed a trend of inverse association with IGF-I serum levels in the whole studied population. After adjusting for potential confounders, including gender, body mass index (BMI), age, and IGF-binding protein-3 (IGFBP-3), younger (18-45 years) women with lower BMI (<27 kg/m(2)) and detectable levels of DL-PCB-156 showed significantly lower IGF-I levels than those in the same age and BMI subgroup with non-detectable levels of DL-PCB-156 (p<0.001). Similarly, ∑PCBs and ∑TEQs showed a tendency to an inverse association with IGF-I levels in the same group of women (p=0.017 and p=0.019 respectively). CONCLUSIONS: These findings suggest that DL-PCBs could be involved in the regulation of the IGF-system in a way possibly influenced by gender, age and BMI. Although these results should be interpreted with caution, such circumstances could contribute to explain the development of diseases associated to the IGF system

    Development and Characterisation of Gastroretentive Solid Dosage Form Based on Melt Foaming

    Get PDF
    Dosage forms with increased gastric residence time are promising tools to increase bioavailability of drugs with narrow absorption window. Low-density floating formulations could avoid gastric emptying; therefore, sustained drug release can be achieved. Our aim was to develop a new technology to produce low-density floating formulations by melt foaming. Excipients were selected carefully, with the criteria of low gastric irritation, melting range below 70°C and well-known use in oral drug formulations. PEG 4000, Labrasol and stearic acid type 50 were used to create metronidazole dispersion which was foamed by air on atmospheric pressure using in-house developed apparatus at 53°C. Stearic acid was necessary to improve the foamability of the molten dispersion. Additionally, it reduced matrix erosion, thus prolonging drug dissolution and preserving hardness of the moulded foam. Labrasol as a liquid solubiliser can be used to increase drug release rate and drug solubility. Based on the SEM images, metronidazole in the molten foam remained in crystalline form. MicroCT scans with the electron microscopic images revealed that the foam has a closed-cell structure, where spherical voids have smooth inner wall, they are randomly dispersed, while adjacent voids often interconnected with each other. Drug release from all compositions followed Korsmeyer-Peppas kinetic model. Erosion of the matrix was the main mechanism of the release of metronidazole. Texture analysis confirmed that stearic acid plays a key role in preserving the integrity of the matrix during dissolution in acidic buffer. The technology creates low density and solid matrix system with micronsized air-filled voids

    Pharmacological Strategies for the Management of Levodopa-Induced Dyskinesia in Patients with Parkinson’s Disease

    Full text link

    Parkinson's Disease: Basic Pathomechanisms and a Clinical Overview

    Get PDF
    PD is a common and a debilitating degenerative movement disorder. The number of patients is increasing worldwide and as yet there is no cure for the disease. The majority of existing treatments target motor symptom control. Over the last two decades the impact of the genetic contribution to PD has been appreciated. Significant discoveries have been made, which have advanced our understanding of the pathophysiological and molecular basis of PD. In this chapter we outline current knowledge of the clinical aspects of PD and the basic mechanistic understanding

    Medical Management and Prevention of Motor Complications in Parkinson’s Disease

    No full text
    corecore