195 research outputs found
The Characteristics of Blood Glucose and WBC Counts in Peripheral Blood of Cases of Hand Foot and Mouth Disease in China: A Systematic Review
Background: Outbreaks of Hand Foot and Mouth Disease (HFMD) have occurred in many parts of the world especially in China. We aimed to summarize the characteristics of the levels of blood glucose and white blood cell (WBC) counts in cases of HFMD in Mainland China and Taiwan, using meta-analysis based on systematic review of published articles. Methods: We systematically reviewed published studies, from the MEDLINE and WANFANG Data, about the levels of blood glucose and WBC counts in cases of HFMD until 15 th June 2011, and quantitatively summarized the characteristics of them using meta-analysis. Results: In total, 37 studies were included in this review. In Mainland China and Taiwan, generally, the average level of blood glucose, the prevalence of hyperglycemia, WBC counts and the prevalence of leukocytosis increased with the severity of the illness. There was no significant difference in the prevalence of leukocytosis between ANS (autonomic nervous system dysregulation)/PE (pulmonary edema) group and CNS (central nervous system) group, and in the average level of blood glucose between healthy controls and mild cases of HFMD. WBC counts in cases infected by EV71 were less than those in cases infected by CA16. Conclusions: our analyses indicated that blood glucose and WBC counts increased with the severity of HFMD disease, which would help doctors to manage patients efficiently
Immunohistochemical detection and regulation of Ξ±5 nicotinic acetylcholine receptor (nAChR) subunits by FoxA2 during mouse lung organogenesis
<p>Abstract</p> <p>Background</p> <p>Ξ±<sub>5 </sub>nicotinic acetylcholine receptor (nAChR) subunits structurally stabilize functional nAChRs in many non-neuronal tissue types. The expression of Ξ±<sub>5 </sub>nAChR subunits and cell-specific markers were assessed during lung morphogenesis by co-localizing immunohistochemistry from embryonic day (E) 13.5 to post natal day (PN) 20. Transcriptional control of Ξ±<sub>5 </sub>nAChR expression by FoxA2 and GATA-6 was determined by reporter gene assays.</p> <p>Results</p> <p>Steady expression of Ξ±<sub>5 </sub>nAChR subunits was observed in distal lung epithelial cells during development while proximal lung expression significantly alternates between abundant prenatal expression, absence at PN4 and PN10, and a return to intense expression at PN20. Ξ±<sub>5 </sub>expression was most abundant on luminal edges of alveolar type (AT) I and ATII cells, non-ciliated Clara cells, and ciliated cells in the proximal lung at various periods of lung formation. Expression of Ξ±<sub>5 </sub>nAChR subunits correlated with cell differentiation and reporter gene assays suggest expression of Ξ±<sub>5 </sub>is regulated in part by FoxA2, with possible cooperation by GATA-6.</p> <p>Conclusions</p> <p>Our data reveal a highly regulated temporal-spatial pattern of Ξ±<sub>5 </sub>nAChR subunit expression during important periods of lung morphogenesis. Due to specific regulation by FoxA2 and distinct identification of Ξ±<sub>5 </sub>in alveolar epithelium and Clara cells, future studies may identify possible mechanisms of cell differentiation and lung homeostasis mediated at least in part by Ξ±<sub>5</sub>-containing nAChRs.</p
Potential of essential fatty acid deficiency with extremely low fat diet in lipoprotein lipase deficiency during pregnancy: A case report
BACKGROUND: Pregnancy in patients with lipoprotein lipase deficiency is associated with high risk of maternal pancreatitis and fetal death. A very low fat diet (< 10% of calories) is the primary treatment modality for the prevention of acute pancreatitis, a rare but potentially serious complication of severe hypertriglyceridemia. Since pregnancy can exacerbate hypertriglyceridemia in the genetic absence of lipoprotein lipase, a further reduction of dietary fat intake to < 1β2% of total caloric intake may be required during the pregnancy, along with the administration of a fibrate. It is uncertain if essential fatty acid deficiency will develop in the mother and fetus with this extremely low fat diet, or whether fibrates will cross the placenta and concentrate in the fetus. CASE PRESENTATION: A 23 year-old gravida 1 woman with primary lipoprotein lipase deficiency was seen at 7 weeks of gestation in the Lipid Clinic for management of severe hypertriglyceridemia that had worsened with pregnancy. While on her habitual fat intake of 10% of total calories, her pregnancy resulted in an exacerbation of the hypertriglyceridemia, which prompted further restriction of fat intake to < 2% of total calories, as well as administration of gemfibrozil at a lower than average dose. The level of gemfibrozil, as the active metabolite, in the venous and arterial fetal cord blood was within the expected therapeutic range for adults. The clinical signs and a biomarker of essential fatty acid deficiency, namely the ratio of 20:3 [n-9] to 20:4 [n-6] fatty acids, were closely monitored throughout her pregnancy. Despite her extremely low fat diet, the levels of essential fatty acids measured in the mother and in the fetal blood immediately postpartum were normal. Normal essential fatty acid levels may have been achieved by the topical application of sunflower oil. CONCLUSIONS: An extremely low fat diet in combination with topical sunflower oil and gemfibrozil administration was safely implemented in pregnancy associated with the severe hypertriglyceridemia of lipoprotein lipase deficiency
Excitability and Synaptic Alterations in the Cerebellum of APP/PS1 Mice
In Alzheimer's disease (AD), the severity of cognitive symptoms is better correlated with the levels of soluble amyloid-beta (AΞ²) rather than with the deposition of fibrillar AΞ² in amyloid plaques. In APP/PS1 mice, a murine model of AD, at 8 months of age the cerebellum is devoid of fibrillar AΞ², but dosage of soluble AΞ²1β42, the form which is more prone to aggregation, showed higher levels in this structure than in the forebrain. Aim of this study was to investigate the alterations of intrinsic membrane properties and of synaptic inputs in Purkinje cells (PCs) of the cerebellum, where only soluble AΞ² is present. PCs were recorded by whole-cell patch-clamp in cerebellar slices from wild-type and APP/PS1 mice. In APP/PS1 PCs, evoked action potential discharge showed enhanced frequency adaptation and larger afterhyperpolarizations, indicating a reduction of the intrinsic membrane excitability. In the miniature GABAergic postsynaptic currents, the largest events were absent in APP/PS1 mice and the interspike intervals distribution was shifted to the left, but the mean amplitude and frequency were normal. The ryanodine-sensitive multivescicular release was not altered and the postsynaptic responsiveness to a GABAA agonist was intact. Climbing fiber postsynaptic currents were normal but their short-term plasticity was reduced in a time window of 100β800 ms. Parallel fiber postsynaptic currents and their short-term plasticity were normal. These results indicate that, in the cerebellar cortex, chronically elevated levels of soluble AΞ²1β42 are associated with alterations of the intrinsic excitability of PCs and with alterations of the release of GABA from interneurons and of glutamate from climbing fibers, while the release of glutamate from parallel fibers and all postsynaptic mechanisms are preserved. Thus, soluble AΞ²1β42 causes, in PCs, multiple functional alterations, including an impairment of intrinsic membrane properties and synapse-specific deficits, with differential consequences even in different subtypes of glutamatergic synapses
c-Rel Deficiency Increases Caspase-4 Expression and Leads to ER Stress and Necrosis in EBV-Transformed Cells
LMP1-mediated activation of nuclear factor of kappaB (NF-ΞΊB) is critical for the ligand independent proliferation and cell survival of in vitro EBV-transformed lymphoblastoid cell lines (LCLs). Previous experiments revealed that a majority of LMP1-dependent responses are regulated by NF-ΞΊB. However, the extent that individual NF-ΞΊB family members are required for these responses, in particular, c-Rel, whose expression is restricted to mature hematopoietic cells, remains unclear. Here we report that low c-Rel expression in LCLs derived from a patient with hyper-IgM syndrome (Pt1), resulted in defects in proliferation and cell survival. In contrast to studies that associated loss of NF-ΞΊB with increased apoptosis, Pt1 LCLs failed to initiate apoptosis and alternatively underwent autophagy and necrotic cell death. Whereas the proliferation defect appeared linked to a c-Rel-associated decrease in c-myc expression, identified pro-survival and pro-apoptotic targets were expressed at or near control levels consistent with the absence of apoptosis. Ultrastructural examination of Pt1 LCLs revealed a high level of cellular and ER stress that was further supported by gene expression profiling showing the upregulation of several genes involved in stress and inflammation. Apoptosis-independent cell death was accompanied by increased expression of the inflammatory marker, caspase-4. Using gene overexpression and siRNA knockdown we demonstrated that levels of c-Rel directly modulated expression of caspase-4 as well as other ER stress genes. Overall, these findings reveal the importance of c-Rel in maintaining LCL viability and that decreased expression results in ER stress and a default response leading to necrotic cell death
Barium Promotes Anchorage-Independent Growth and Invasion of Human HaCaT Keratinocytes via Activation of c-SRC Kinase
Explosive increases in skin cancers have been reported in more than 36 million patients with arsenicosis caused by drinking arsenic-polluted well water. This study and previous studies showed high levels of barium as well as arsenic in the well water. However, there have been no reports showing a correlation between barium and cancer. In this study, we examined whether barium (BaCl2) may independently have cancer-related effects on human precancerous keratinocytes (HaCaT). Barium (5β50 Β΅M) biologically promoted anchorage-independent growth and invasion of HaCaT cells in vitro. Barium (5 Β΅M) biochemically enhanced activities of c-SRC, FAK, ERK and MT1-MMP molecules, which regulate anchorage-independent growth and/or invasion. A SRC kinase specific inhibitor, protein phosphatase 2 (PP2), blocked barium-mediated promotion of anchorage-independent growth and invasion with decreased c-SRC kinase activity. Barium (2.5β5 Β΅M) also promoted anchorage-independent growth and invasion of fibroblasts (NIH3T3) and immortalized nontumorigenic melanocytes (melan-a), but not transformed cutaneous squamous cell carcinoma (HSC5 and A431) and malignant melanoma (Mel-ret) cells, with activation of c-SRC kinase. Taken together, our biological and biochemical findings newly suggest that the levels of barium shown in drinking well water independently has the cancer-promoting effects on precancerous keratinocytes, fibroblast and melanocytes in vitro
Distinct Roles for Dectin-1 and TLR4 in the Pathogenesis of Aspergillus fumigatus Keratitis
Aspergillus species are a major worldwide cause of corneal ulcers, resulting in visual impairment and blindness in immunocompetent individuals. To enhance our understanding of the pathogenesis of Aspergillus keratitis, we developed a murine model in which red fluorescent protein (RFP)-expressing A. fumigatus (Af293.1RFP) conidia are injected into the corneal stroma, and disease progression and fungal survival are tracked over time. Using Mafia mice in which c-fms expressing macrophages and dendritic cells can be induced to undergo apoptosis, we demonstrated that the presence of resident corneal macrophages is essential for production of IL-1Ξ² and CXCL1/KC, and for recruitment of neutrophils and mononuclear cells into the corneal stroma. We found that Ξ²-glucan was highly expressed on germinating conidia and hyphae in the cornea stroma, and that both Dectin-1 and phospho-Syk were up-regulated in infected corneas. Additionally, we show that infected Dectin-1β/β corneas have impaired IL-1Ξ² and CXCL1/KC production, resulting in diminished cellular infiltration and fungal clearance compared with control mice, especially during infection with clinical isolates expressing high Ξ²-glucan. In contrast to Dectin 1β/β mice, cellular infiltration into infected TLR2β/β, TLR4β/β, and MD-2β/β mice corneas was unimpaired, indicating no role for these receptors in cell recruitment; however, fungal killing was significantly reduced in TLR4β/β mice, but not TLR2β/β or MD-2β/β mice. We also found that TRIFβ/β and TIRAPβ/β mice exhibited no fungal-killing defects, but that MyD88β/β and IL-1R1β/β mice were unable to regulate fungal growth. In conclusion, these data are consistent with a model in which Ξ²-glucan on A.fumigatus germinating conidia activates Dectin-1 on corneal macrophages to produce IL-1Ξ², and CXCL1, which together with IL-1R1/MyD88-dependent activation, results in recruitment of neutrophils to the corneal stroma and TLR4-dependent fungal killing
Distinct Roles for Dectin-1 and TLR4 in the Pathogenesis of Aspergillus fumigatus Keratitis
Aspergillus species are a major worldwide cause of corneal ulcers, resulting in visual impairment and blindness in immunocompetent individuals. To enhance our understanding of the pathogenesis of Aspergillus keratitis, we developed a murine model in which red fluorescent protein (RFP)-expressing A. fumigatus (Af293.1RFP) conidia are injected into the corneal stroma, and disease progression and fungal survival are tracked over time. Using Mafia mice in which c-fms expressing macrophages and dendritic cells can be induced to undergo apoptosis, we demonstrated that the presence of resident corneal macrophages is essential for production of IL-1Ξ² and CXCL1/KC, and for recruitment of neutrophils and mononuclear cells into the corneal stroma. We found that Ξ²-glucan was highly expressed on germinating conidia and hyphae in the cornea stroma, and that both Dectin-1 and phospho-Syk were up-regulated in infected corneas. Additionally, we show that infected Dectin-1β/β corneas have impaired IL-1Ξ² and CXCL1/KC production, resulting in diminished cellular infiltration and fungal clearance compared with control mice, especially during infection with clinical isolates expressing high Ξ²-glucan. In contrast to Dectin 1β/β mice, cellular infiltration into infected TLR2β/β, TLR4β/β, and MD-2β/β mice corneas was unimpaired, indicating no role for these receptors in cell recruitment; however, fungal killing was significantly reduced in TLR4β/β mice, but not TLR2β/β or MD-2β/β mice. We also found that TRIFβ/β and TIRAPβ/β mice exhibited no fungal-killing defects, but that MyD88β/β and IL-1R1β/β mice were unable to regulate fungal growth. In conclusion, these data are consistent with a model in which Ξ²-glucan on A.fumigatus germinating conidia activates Dectin-1 on corneal macrophages to produce IL-1Ξ², and CXCL1, which together with IL-1R1/MyD88-dependent activation, results in recruitment of neutrophils to the corneal stroma and TLR4-dependent fungal killing
Refinement of Light-Responsive Transcript Lists Using Rice Oligonucleotide Arrays: Evaluation of Gene-Redundancy
Studies of gene function are often hampered by gene-redundancy, especially in organisms with large genomes such as rice (Oryza sativa). We present an approach for using transcriptomics data to focus functional studies and address redundancy. To this end, we have constructed and validated an inexpensive and publicly available rice oligonucleotide near-whole genome array, called the rice NSF45K array. We generated expression profiles for light- vs. dark-grown rice leaf tissue and validated the biological significance of the data by analyzing sources of variation and confirming expression trends with reverse transcription polymerase chain reaction. We examined trends in the data by evaluating enrichment of gene ontology terms at multiple false discovery rate thresholds. To compare data generated with the NSF45K array with published results, we developed publicly available, web-based tools (www.ricearray.org). The Oligo and EST Anatomy Viewer enables visualization of EST-based expression profiling data for all genes on the array. The Rice Multi-platform Microarray Search Tool facilitates comparison of gene expression profiles across multiple rice microarray platforms. Finally, we incorporated gene expression and biochemical pathway data to reduce the number of candidate gene products putatively participating in the eight steps of the photorespiration pathway from 52 to 10, based on expression levels of putatively functionally redundant genes. We confirmed the efficacy of this method to cope with redundancy by correctly predicting participation in photorespiration of a gene with five paralogs. Applying these methods will accelerate rice functional genomics
- β¦