102 research outputs found

    Atlas Toolkit: Fast registration of 3D morphological datasets in the absence of landmarks

    Get PDF
    Image registration is a gateway technology for Developmental Systems Biology, enabling computational analysis of related datasets within a shared coordinate system. Many registration tools rely on landmarks to ensure that datasets are correctly aligned; yet suitable landmarks are not present in many datasets. Atlas Toolkit is a Fiji/ImageJ plugin collection offering elastic group-wise registration of 3D morphological datasets, guided by segmentation of the interesting morphology. We demonstrate the method by combinatorial mapping of cell signalling events in the developing eyes of chick embryos, and use the integrated datasets to predictively enumerate Gene Regulatory Network states

    Mutation of pescadillo Disrupts Oligodendrocyte Formation in Zebrafish

    Get PDF
    Background: In vertebrates, the myelin sheath is essential for efficient propagation of action potentials along the axon shaft. Oligodendrocytes are the cells of the central nervous system that create myelin sheaths. During embryogenesis, ventral neural tube precursors give rise to oligodendrocyte progenitor cells, which divide and migrate throughout the central nervous system. This study aimed to investigate mechanisms that regulate oligodendrocyte progenitor cell formation. Methodology/Principal Findings: By conducting a mutagenesis screen in transgenic zebrafish, we identified a mutation, designated vu166, by an apparent reduction in the number of oligodendrocyte progenitor cells in the dorsal spinal cord. We subsequently determined that vu166 is an allele of pescadillo, a gene known to play a role in ribosome biogenesis and cell proliferation. We found that pescadillo function is required for both the proper number of oligodendrocyte progenitors to form, by regulating cell cycle progression, and for normal levels of myelin gene expression. Conclusions/Significance: Our data provide evidence that neural precursors require pes function to progress through th

    Advanced optical imaging in living embryos

    Get PDF
    Developmental biology investigations have evolved from static studies of embryo anatomy and into dynamic studies of the genetic and cellular mechanisms responsible for shaping the embryo anatomy. With the advancement of fluorescent protein fusions, the ability to visualize and comprehend how thousands to millions of cells interact with one another to form tissues and organs in three dimensions (xyz) over time (t) is just beginning to be realized and exploited. In this review, we explore recent advances utilizing confocal and multi-photon time-lapse microscopy to capture gene expression, cell behavior, and embryo development. From choosing the appropriate fluorophore, to labeling strategy, to experimental set-up, and data pipeline handling, this review covers the various aspects related to acquiring and analyzing multi-dimensional data sets. These innovative techniques in multi-dimensional imaging and analysis can be applied across a number of fields in time and space including protein dynamics to cell biology to morphogenesis

    A Quantitative Image Cytometry Technique for Time Series or Population Analyses of Signaling Networks

    Get PDF
    Background: Modeling of cellular functions on the basis of experimental observation is increasingly common in the field of cellular signaling. However, such modeling requires a large amount of quantitative data of signaling events with high spatio-temporal resolution. A novel technique which allows us to obtain such data is needed for systems biology of cellular signaling. Methodology/Principal Findings: We developed a fully automatable assay technique, termed quantitative image cytometry (QIC), which integrates a quantitative immunostaining technique and a high precision image-processing algorithm for cell identification. With the aid of an automated sample preparation system, this device can quantify protein expression, phosphorylation and localization with subcellular resolution at one-minute intervals. The signaling activities quantified by the assay system showed good correlation with, as well as comparable reproducibility to, western blot analysis. Taking advantage of the high spatio-temporal resolution, we investigated the signaling dynamics of the ERK pathway in PC12 cells. Conclusions/Significance: The QIC technique appears as a highly quantitative and versatile technique, which can be a convenient replacement for the most conventional techniques including western blot, flow cytometry and live cell imaging

    Hyperspectral phasor analysis enables multiplexed 5D in vivo imaging

    Get PDF
    Time-lapse imaging of multiple labels is challenging for biological imaging as noise, photobleaching and phototoxicity compromise signal quality, while throughput can be limited by processing time. Here, we report software called Hyper-Spectral Phasors (HySP) for denoising and unmixing multiple spectrally overlapping fluorophores in a low signal-to-noise regime with fast analysis. We show that HySP enables unmixing of seven signals in time-lapse imaging of living zebrafish embryos

    Expression of stabilized β-catenin in differentiated neurons of transgenic mice does not result in tumor formation

    Get PDF
    BACKGROUND: Medulloblastomas, embryonal tumors arising in the cerebellum, commonly contain mutations that activate Wnt signaling. To determine whether increased Wnt signaling in the adult CNS is sufficient to induce tumor formation, we created transgenic mice expressing either wild-type or activated β-catenin in the brain. METHODS: Wild-type and mutant human β-catenin transgenes were expressed under the control of a murine PrP promoter fragment that drives high level postnatal expression in the CNS. Mutant β-catenin was stabilized by a serine to phenylalanine alteration in codon 37. RESULTS: Expression of the mutant transgene resulted in an approximately two-fold increase in β-catenin protein levels in the cortex and cerebellum of adult animals. Immunohistochemical analysis revealed nuclear β-catenin in hippocampal, cortical and cerebellar neurons of transgenic animals but not in non-transgenic controls. Tail kinking was observed in some transgenic animals, but no CNS malformations or tumors were detected. CONCLUSIONS: No tumors or morphologic alterations were detected in the brains of transgenic mice expressing stabilized β-catenin, suggesting that postnatal Wnt signaling in differentiated neurons may not be sufficient to induce CNS tumorigenesis

    Multi-Cellular Logistics of Collective Cell Migration

    Get PDF
    During development, the formation of biological networks (such as organs and neuronal networks) is controlled by multicellular transportation phenomena based on cell migration. In multi-cellular systems, cellular locomotion is restricted by physical interactions with other cells in a crowded space, similar to passengers pushing others out of their way on a packed train. The motion of individual cells is intrinsically stochastic and may be viewed as a type of random walk. However, this walk takes place in a noisy environment because the cell interacts with its randomly moving neighbors. Despite this randomness and complexity, development is highly orchestrated and precisely regulated, following genetic (and even epigenetic) blueprints. Although individual cell migration has long been studied, the manner in which stochasticity affects multi-cellular transportation within the precisely controlled process of development remains largely unknown. To explore the general principles underlying multicellular migration, we focus on the migration of neural crest cells, which migrate collectively and form streams. We introduce a mechanical model of multi-cellular migration. Simulations based on the model show that the migration mode depends on the relative strengths of the noise from migratory and non-migratory cells. Strong noise from migratory cells and weak noise from surrounding cells causes “collective migration,” whereas strong noise from non-migratory cells causes “dispersive migration.” Moreover, our theoretical analyses reveal that migratory cells attract each other over long distances, even without direct mechanical contacts. This effective interaction depends on the stochasticity of the migratory and non-migratory cells. On the basis of these findings, we propose that stochastic behavior at the single-cell level works effectively and precisely to achieve collective migration in multi-cellular systems

    The living microarray: a high-throughput platform for measuring transcription dynamics in single cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Current methods of measuring transcription in high-throughput have led to significant improvements in our knowledge of transcriptional regulation and Systems Biology. However, endpoint measurements obtained from methods that pool populations of cells are not amenable to studying time-dependent processes that show cell heterogeneity.</p> <p>Results</p> <p>Here we describe a high-throughput platform for measuring transcriptional changes in real time in single mammalian cells. By using reverse transfection microarrays we are able to transfect fluorescent reporter plasmids into 600 independent clusters of cells plated on a single microscope slide and image these clusters every 20 minutes. We use a fast-maturing, destabilized and nuclear-localized reporter that is suitable for automated segmentation to accurately measure promoter activity in single cells. We tested this platform with synthetic drug-inducible promoters that showed robust induction over 24 hours. Automated segmentation and tracking of over 11 million cell images during this period revealed that cells display substantial heterogeneity in their responses to the applied treatment, including a large proportion of transfected cells that do not respond at all.</p> <p>Conclusions</p> <p>The results from our single-cell analysis suggest that methods that measure average cellular responses, such as DNA microarrays, RT-PCR and chromatin immunoprecipitation, characterize a response skewed by a subset of cells in the population. Our method is scalable and readily adaptable to studying complex systems, including cell proliferation, differentiation and apoptosis.</p

    Plxdc2 Is a Mitogen for Neural Progenitors

    Get PDF
    The development of different brain regions involves the coordinated control of proliferation and cell fate specification along and across the neuraxis. Here, we identify Plxdc2 as a novel regulator of these processes, using in ovo electroporation and in vitro cultures of mammalian cells. Plxdc2 is a type I transmembrane protein with some homology to nidogen and to plexins. It is expressed in a highly discrete and dynamic pattern in the developing nervous system, with prominent expression in various patterning centres. In the chick neural tube, where Plxdc2 expression parallels that seen in the mouse, misexpression of Plxdc2 increases proliferation and alters patterns of neurogenesis, resulting in neural tube thickening at early stages. Expression of the Plxdc2 extracellular domain alone, which can be cleaved and shed in vivo, is sufficient for this activity, demonstrating a cell non-autonomous function. Induction of proliferation is also observed in cultured embryonic neuroepithelial cells (ENCs) derived from E9.5 mouse neural tube, which express a Plxdc2-binding activity. These experiments uncover a direct molecular activity of Plxdc2 in the control of proliferation, of relevance in understanding the role of this protein in various cancers, where its expression has been shown to be altered. They also implicate Plxdc2 as a novel component of the network of signalling molecules known to coordinate proliferation and differentiation in the developing nervous system

    Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms

    Get PDF
    This is the author accepted manuscript. The final version is available from the American Association for the Advancement of Science via the DOI in this recordTrue physiological imaging of subcellular dynamics requires studying cells within their parent organisms, where all the environmental cues that drive gene expression, and hence the phenotypes that we actually observe, are present. A complete understanding also requires volumetric imaging of the cell and its surroundings at high spatiotemporal resolution, without inducing undue stress on either. We combined lattice light-sheet microscopy with adaptive optics to achieve, across large multicellular volumes, noninvasive aberration-free imaging of subcellular processes, including endocytosis, organelle remodeling during mitosis, and the migration of axons, immune cells, and metastatic cancer cells in vivo. The technology reveals the phenotypic diversity within cells across different organisms and developmental stages and may offer insights into how cells harness their intrinsic variability to adapt to different physiological environments.Howard Hughes Medical Institute (HHMI)BiogenIonis PharmaceuticalsNational Institutes of Health (NIH)University of ExeterCarol M. Baldwin FoundationDamon Runyon Cancer Research FoundationNational Science Foundation (NSF)Pew Charitable Trust
    corecore