1,352 research outputs found
Instability of black hole formation under small pressure perturbations
We investigate here the spectrum of gravitational collapse endstates when
arbitrarily small perfect fluid pressures are introduced in the classic black
hole formation scenario as described by Oppenheimer, Snyder and Datt (OSD) [1].
This extends a previous result on tangential pressures [2] to the more
physically realistic scenario of perfect fluid collapse. The existence of
classes of pressure perturbations is shown explicitly, which has the property
that injecting any smallest pressure changes the final fate of the dynamical
collapse from a black hole to a naked singularity. It is therefore seen that
any smallest neighborhood of the OSD model, in the space of initial data,
contains collapse evolutions that go to a naked singularity outcome. This gives
an intriguing insight on the nature of naked singularity formation in
gravitational collapse.Comment: 7 pages, 1 figure, several modifications to match published version
on GR
Proper depiction of monsoon depression through IRS-P4 MSMR
In this paper, daily variations of satellite-derived geophysical parameters such as integrated water vapour (IWV), cloud liquid water content (CLW), sea surface temperature (SST) and sea surface wind speed (SSW) have been studied for a case of monsoon depression that formed over the Bay of Bengal during 19th-24th August 2000. For this purpose, IRS P4 MSMR satellite data have been utilized over the domain equator - 25°N and 40°-100°E. An integrated approach of satellite data obtained from IRS-P4, METEOSAT-5 and INSAT was made for getting a signal for the development of monsoon depression over the Indian region. Variations in deep convective activity obtained through visible, infrared and OLR data at 06 UTC was thoroughly analyzed for the complete life cycle of monsoon depression. Geophysical parameters obtained through IRS-P4 satellite data were compared with vorticity, convergence and divergence at 850 and 200 hPa levels generated through cloud motion vectors (CMVs) and water vapour wind vectors (WVWVs) obtained from METEOSAT-5 satellite. This comparison was made for finding proper consistency of geophysical parameters with dynamical aspects of major convective activity of the depression. From the results of this study it is revealed that there was strengthening of sea surface winds to the south of low-pressure area prior to the formation of depression. This indicated the possibility of increase in cyclonic vorticity in the lower troposphere. Hence, wind field at 850 hPa with satellite input of CMVs in objective analysis of wind field using optimum interpolation (OI) scheme was computed. Maximum cyclonic vorticity field at 850 hPa was obtained in the region of depression just one day before its formation. Similarly, with the same procedure maximum anticyclonic vorticity was observed at 200 hPa with WVWVs input. Consistent convergence and divergence at 850 and 200 hPa was noticed with respect to these vorticities. In association with these developments, we could get lowest values of OLR (120W/m 2) associated with major convective activity that was consistent with the maximum values of integrated water vapour (6-8 gm/cm 2) and cloud liquid water content (50-60 mg/cm 2) persisting particularly in the southwest sector of the monsoon depression
Sensitivity of an Ultrasonic Technique for Axial Stress Determination
In machine assembly it is often required that bolts used to fasten machine parts be installed with specific design preloads. Because it is inconvenient to measure preload directly, preload specifications are usually based on some more easily measured quantity with which the level of preload may be correlated. Most often this quantity is the torque to be applied to the bolt at installation. Studies by Blake and Kurtz [1] and Heyman [2] have shown that when bolts are torqued into place, the fraction of applied torque which translates into useful preload is small and widely variable. This is so because the large majority of applied torque is absorbed in overcoming friction in the bolt’s threads and at the underside of the bolt’s head. Consequently, even though the torque to install different bolts may be identical, small variations in frictional conditions from one installation to the next can result in large variations in preload. The unreliability of torque as an indicator of preload has been the motivating factor behind the development of a number of alternate methods of measurement [2–5]
Tumor radiomic features complement clinico-radiological factors in predicting long-term local control and laryngectomy free survival in locally advanced laryngo-pharyngeal cancers
OBJECTIVE: To study if pre-treatment CT texture features in locally advanced squamous cell carcinoma of laryngo-pharynx can predict long-term local control and laryngectomy free survival (LFS). METHODS: Image texture features of 60 patients treated with chemoradiation (CTRT) within an ethically approved study were studied on contrast-enhanced images using a texture analysis research software (TexRad, UK). A filtration-histogram technique was used where the filtration step extracted and enhanced features of different sizes and intensity variations corresponding to a particular spatial scale filter (SSF): SSF = 0 (without filtration), SSF = 2 mm (fine texture), SSF = 3-5 mm (medium texture) and SSF = 6 mm (coarse texture). Quantification by statistical and histogram technique comprised mean intensity, standard-deviation, entropy, mean positive pixels, skewness and kurtosis. The ability of texture analysis to predict LFS or local control was determined using Kaplan-Meier analysis and multivariate cox model. RESULTS: Median follow-up of patients was 24 months (95% CI:20-28). 39 (65%) patients were locally controlled at last follow-up. 10 (16%) had undergone salvage laryngectomy after CTRT. For both local control & LFS, threshold optimal cut-off values of texture features were analyzed. Medium filtered-texture feature that were associated with poorer laryngectomy free survival were entropy ≥4.54, (p = 0.006), kurtosis ≥4.18; p = 0.019, skewness ≤-0.59, p = 0.001, and standard deviation ≥43.18; p = 0.009). Inferior local control was associated with medium filtered features entropy ≥4.54; p 0.01 and skewness ≤ - 0.12; p = 0.02. Using fine filters, entropy ≥4.29 and kurtosis ≥-0.27 were also associated with inferior local control (p = 0.01 for both parameters). Multivariate analysis showed medium filter entropy as an independent predictor for LFS and local control (p < 0.001 & p = 0.001). CONCLUSION: Medium texture entropy is a predictor for inferior local control and laryngectomy free survival in locally advanced laryngo-pharyngeal cancer and this can complement clinico-radiological factors in predicting prognosticating these tumors. ADVANCES IN KNOWLEDGE: Texture features play an important role as a surrogate imaging biomarker for predicting local control and laryngectomy free survival in locally advanced laryngo-pharyngeal tumors treated with definitive chemoradiation
Triglyceride-containing lipoprotein sub-fractions and risk of coronary heart disease and stroke: A prospective analysis in 11,560 adults
AIMS: Elevated low-density lipoprotein cholesterol (LDL-C) is a risk factor for cardiovascular disease; however, there is uncertainty about the role of total triglycerides and the individual triglyceride-containing lipoprotein sub-fractions. We measured 14 triglyceride-containing lipoprotein sub-fractions using nuclear magnetic resonance and examined associations with coronary heart disease and stroke. METHODS: Triglyceride-containing sub-fraction measures were available in 11,560 participants from the three UK cohorts free of coronary heart disease and stroke at baseline. Multivariable logistic regression was used to estimate the association of each sub-fraction with coronary heart disease and stroke expressed as the odds ratio per standard deviation increment in the corresponding measure. RESULTS: The 14 triglyceride-containing sub-fractions were positively correlated with one another and with total triglycerides, and inversely correlated with high-density lipoprotein cholesterol (HDL-C). Thirteen sub-fractions were positively associated with coronary heart disease (odds ratio in the range 1.12 to 1.22), with the effect estimates for coronary heart disease being comparable in subgroup analysis of participants with and without type 2 diabetes, and were attenuated after adjustment for HDL-C and LDL-C. There was no evidence for a clear association of any triglyceride lipoprotein sub-fraction with stroke. CONCLUSIONS: Triglyceride sub-fractions are associated with increased risk of coronary heart disease but not stroke, with attenuation of effects on adjustment for HDL-C and LDL-C
Gravitational collapse with tachyon field and barotropic fluid
A particular class of space-time, with a tachyon field, \phi, and a
barotropic fluid constituting the matter content, is considered herein as a
model for gravitational collapse. For simplicity, the tachyon potential is
assumed to be of inverse square form i.e., V(\phi) \sim \phi^{-2}. Our purpose,
by making use of the specific kinematical features of the tachyon, which are
rather different from a standard scalar field, is to establish the several
types of asymptotic behavior that our matter content induces. Employing a
dynamical system analysis, complemented by a thorough numerical study, we find
classical solutions corresponding to a naked singularity or a black hole
formation. In particular, there is a subset where the fluid and tachyon
participate in an interesting tracking behaviour, depending sensitively on the
initial conditions for the energy densities of the tachyon field and barotropic
fluid. Two other classes of solutions are present, corresponding respectively,
to either a tachyon or a barotropic fluid regime. Which of these emerges as
dominant, will depend on the choice of the barotropic parameter, \gamma.
Furthermore, these collapsing scenarios both have as final state the formation
of a black hole.Comment: 18 pages, 7 figures. v3: minor changes. Final version to appear in
GR
Automatic Retinal Vascularity Identification and Artery/Vein Classification Using Near-Infrared Reflectance Retinographies
The conference was held in Porto, Portugal, February 27 – March 1, 2017.©2019 This version of the article has been accepted for publication, after
peer review and is subject to Springer Nature’s AM terms of use, but is not
the Version of Record and does not reflect post-acceptance improvements,
or any corrections. The Version of Record is available online at:
https://doi.org/10.1007/978-3-030-12209-6_13[Absctract]: The retinal microcirculation structure is commonly used as an important source of information in many medical specialities for the diagnosis of relevant diseases such as, for reference, hypertension, arteriosclerosis, or diabetes. Also, the evaluation of the cerebrovascular and cardiovascular disease progression could be performed through the identification of abnormal signs in the retinal vasculature architecture. Given that these alterations affect differently the artery and vein vascularities, a precise characterization of both blood vessel types is also crucial for the diagnosis and treatment of a significant variety of retinal and systemic pathologies. In this work, we present a fully automatic method for the retinal vessel identification and classification in arteries and veins using Optical Coherence Tomography scans. In our analysis, we used a dataset composed by 30 near-infrared reflectance retinography images from different patients, which were used to test and validate the proposed method. In particular, a total of 597 vessel segments were manually labelled by an expert clinician, being used as groundtruth for the validation process. As result, this methodology achieved a satisfactory performance in the complex issue of the retinal vessel tree identification and classification.This work is supported by the Instituto de Salud Carlos III,
Government of Spain and FEDER funds of the European Union through the PI14/02161
and the DTS15/00153 research projects and by the Ministerio de Economía y Competitividad,
Government of Spain through the DPI2015-69948-R research project. Also,
this work has received financial support from the European Union (European Regional
Development Fund - ERDF) and the Xunta de Galicia, Centro singular de investigación
de Galicia accreditation 2016-2019, Ref. ED431G/01; and Grupos de Referencia Competitiva,
Ref. ED431C 2016-047.Xunta de Galicia; ED431G/01Xunta de Galicia; ED431C 2016-04
A Lipid Based Antigen Delivery System Efficiently Facilitates MHC Class-I Antigen Presentation in Dendritic Cells to Stimulate CD8+ T Cells
The most effective strategy for protection against intracellular infections such as Leishmania is
vaccination with live parasites. Use of recombinant proteins avoids the risks associated with live
vaccines. However, due to low immunogenicity, they fail to trigger T cell responses particularly of CD8+cells requisite for persistent immunity. Previously we showed the importance of protein entrapment in cationic liposomes and MPL as adjuvant for elicitation of CD4+ and CD8+ T cell responses for longterm protection. In this study we investigated the role of cationic liposomes on maturation and antigen presentation capacity of dendritic cells (DCs). We observed that cationic liposomes were taken up very
efficiently by DCs and transported to different cellular sites. DCs activated with liposomal rgp63 led to
efficient presentation of antigen to specific CD4+ and CD8+ T cells. Furthermore, lymphoid CD8+ T cells from liposomal rgp63 immunized mice demonstrated better proliferative ability when co-cultured ex vivo with stimulated DCs. Addition of MPL to vaccine enhanced the antigen presentation by DCs and induced more efficient antigen specific CD8+ T cell responses when compared to free and liposomal ntigen. These liposomal formulations presented to CD8+ T cells through TAP-dependent MHC-I pathway offer new possibilities for a safe subunit vaccine
Knockdown of Cytosolic Glutaredoxin 1 Leads to Loss of Mitochondrial Membrane Potential: Implication in Neurodegenerative Diseases
Mitochondrial dysfunction including that caused by oxidative stress has been implicated in the pathogenesis of neurodegenerative diseases. Glutaredoxin 1 (Grx1), a cytosolic thiol disulfide oxido-reductase, reduces glutathionylated proteins to protein thiols and helps maintain redox status of proteins during oxidative stress. Grx1 downregulation aggravates mitochondrial dysfunction in animal models of neurodegenerative diseases, such as Parkinson's and motor neuron disease. We examined the mechanism underlying the regulation of mitochondrial function by Grx1. Downregulation of Grx1 by shRNA results in loss of mitochondrial membrane potential (MMP), which is prevented by the thiol antioxidant, α-lipoic acid, or by cyclosporine A, an inhibitor of mitochondrial permeability transition. The thiol groups of voltage dependent anion channel (VDAC), an outer membrane protein in mitochondria but not adenosine nucleotide translocase (ANT), an inner membrane protein, are oxidized when Grx1 is downregulated. We then examined the effect of β-N-oxalyl amino-L-alanine (L-BOAA), an excitatory amino acid implicated in neurolathyrism (a type of motor neuron disease), that causes mitochondrial dysfunction. Exposure of cells to L-BOAA resulted in loss of MMP, which was prevented by overexpression of Grx1. Grx1 expression is regulated by estrogen in the CNS and treatment of SH-SY5Y cells with estrogen upregulated Grx1 and protected from L-BOAA mediated MMP loss. Our studies demonstrate that Grx1, a cytosolic oxido-reductase, helps maintain mitochondrial integrity and prevents MMP loss caused by oxidative insult. Further, downregulation of Grx1 leads to mitochondrial dysfunction through oxidative modification of the outer membrane protein, VDAC, providing support for the critical role of Grx1 in maintenance of MMP
Decolonisation of MRSA, S. aureus and E. coli by Cold-Atmospheric Plasma Using a Porcine Skin Model In Vitro
In the last twenty years new antibacterial agents approved by the U.S. FDA decreased whereas in parallel the resistance situation of multi-resistant bacteria increased. Thus, community and nosocomial acquired infections of resistant bacteria led to a decrease in the efficacy of standard therapy, prolonging treatment time and increasing healthcare costs. Therefore, the aim of this work was to demonstrate the applicability of cold atmospheric plasma for decolonisation of Gram-positive (Methicillin-resistant Staphylococcus aureus (MRSA), Methicillin-sensitive Staphylococcus aureus) and Gram-negative bacteria (E. coli) using an ex vivo pig skin model. Freshly excised skin samples were taken from six month old female pigs (breed: Pietrain). After application of pure bacteria on the surface of the explants these were treated with cold atmospheric plasma for up to 15 min. Two different plasma devices were evaluated. A decolonisation efficacy of 3 log10 steps was achieved already after 6 min of plasma treatment. Longer plasma treatment times achieved a killing rate of 5 log10 steps independently from the applied bacteria strains. Histological evaluations of untreated and treated skin areas upon cold atmospheric plasma treatment within 24 h showed no morphological changes as well as no significant degree of necrosis or apoptosis determined by the TUNEL-assay indicating that the porcine skin is still vital. This study demonstrates for the first time that cold atmospheric plasma is able to very efficiently kill bacteria applied to an intact skin surface using an ex vivo porcine skin model. The results emphasize the potential of cold atmospheric plasma as a new possible treatment option for decolonisation of human skin from bacteria in patients in the future without harming the surrounding tissue
- …