49 research outputs found

    The estimation of patient-specific cardiac diastolic functions from clinical measurements.

    Get PDF
    An unresolved issue in patients with diastolic dysfunction is that the estimation of myocardial stiffness cannot be decoupled from diastolic residual active tension (AT) because of the impaired ventricular relaxation during diastole. To address this problem, this paper presents a method for estimating diastolic mechanical parameters of the left ventricle (LV) from cine and tagged MRI measurements and LV cavity pressure recordings, separating the passive myocardial constitutive properties and diastolic residual AT. Dynamic C1-continuous meshes are automatically built from the anatomy and deformation captured from dynamic MRI sequences. Diastolic deformation is simulated using a mechanical model that combines passive and active material properties. The problem of non-uniqueness of constitutive parameter estimation using the well known Guccione law is characterized by reformulation of this law. Using this reformulated form, and by constraining the constitutive parameters to be constant across time points during diastole, we separate the effects of passive constitutive properties and the residual AT during diastolic relaxation. Finally, the method is applied to two clinical cases and one control, demonstrating that increased residual AT during diastole provides a potential novel index for delineating healthy and pathological cases

    Induction of JNK and c-Abl signalling by cisplatin and oxaliplatin in mismatch repair-proficient and -deficient cells

    Get PDF
    Loss of DNA mismatch repair has been observed in a variety of human cancers. Recent studies have shown that loss of DNA mismatch repair results in resistance to cisplatin but not oxaliplatin, suggesting that the mismatch repair proteins serve as a detector for cisplatin but not oxaliplatin adducts. To identify the signal transduction pathways with which the detector communicates, we investigated the effect of loss of DNA mismatch repair on activation of known damage-responsive pathways, and recently reported that cisplatin differentially activates c-Jun NH2-terminal kinase (JNK) and c-Abl in repair-proficient vs.-deficient cells. In the current study, we directly compared differential activation of these pathways by cisplatin vs. oxaliplatin. The results confirm that cisplatin activates JNK kinase 5.7 ± 1.5 (s.d.)-fold more efficiently in DNA mismatch repair-proficient than repair-deficient cells, and that the c-Abl response to cisplatin is completely absent in DNA mismatch repair-deficient cells. In contrast, there was no detectable activation of the JNK or c-Abl kinases in DNA mismatch repair-proficient or -deficient cells exposed to oxaliplatin. The present study demonstrates that, despite the similarity of the adducts produced by cisplatin and oxaliplatin, they appear to be recognized by different detectors. The DNA mismatch repair system plays an important part in the recognition of cisplatin adducts, and activation of both the JNK and c-Abl kinases in response to cisplatin damage is dependent on the detector function of the DNA mismatch repair proteins. In contrast, this detector does not respond to oxaliplatin adducts. © 1999 Cancer Research Campaig

    The “Missing” Link Between Acute Hemodynamic Effect and Clinical Response

    Get PDF
    The hemodynamic, mechanical and electrical effects of cardiac resynchronization therapy (CRT) occur immediate and are lasting as long as CRT is delivered. Therefore, it is reasonable to assume that acute hemodynamic effects should predict long-term outcome. However, in the literature there is more evidence against than in favour of this idea. This raises the question of what factor(s) do relate to the benefit of CRT. There is increasing evidence that dyssynchrony, presumably through the resultant abnormal local mechanical behaviour, induces extensive remodelling, comprising structure, as well as electrophysiological and contractile processes. Resynchronization has been shown to reverse these processes, even in cases of limited hemodynamic improvement. These data may indicate the need for a paradigm shift in order to achieve maximal long-term CRT response

    Probiotic Microbes Sustain Youthful Serum Testosterone Levels and Testicular Size in Aging Mice

    Get PDF
    The decline of circulating testosterone levels in aging men is associated with adverse health effects. During studies of probiotic bacteria and obesity, we discovered that male mice routinely consuming purified lactic acid bacteria originally isolated from human milk had larger testicles and increased serum testosterone levels compared to their age-matched controls. Further investigation using microscopy-assisted histomorphometry of testicular tissue showed that mice consuming Lactobacillus reuteri in their drinking water had significantly increased seminiferous tubule cross-sectional profiles and increased spermatogenesis and Leydig cell numbers per testis when compared with matched diet counterparts This showed that criteria of gonadal aging were reduced after routinely consuming a purified microbe such as L. reuteri. We tested whether these features typical of sustained reproductive fitness may be due to anti-inflammatory properties of L. reuteri, and found that testicular mass and other indicators typical of old age were similarly restored to youthful levels using systemic administration of antibodies blocking pro-inflammatory cytokine interleukin-17A. This indicated that uncontrolled host inflammatory responses contributed to the testicular atrophy phenotype in aged mice. Reduced circulating testosterone levels have been implicated in many adverse effects; dietary L. reuteri or other probiotic supplementation may provide a viable natural approach to prevention of male hypogonadism, absent the controversy and side-effects of traditional therapies, and yield practical options for management of disorders typically associated with normal aging. These novel findings suggest a potential high impact for microbe therapy in public health by imparting hormonal and gonad features of reproductive fitness typical of much younger healthy individuals.National Institutes of Health (U.S.) (Grant P30-ES002109)National Institutes of Health (U.S.) (Grant U01 CA164337)National Institutes of Health (U.S.) (Grant RO1CA108854

    From staff-mix to skill-mix and beyond: towards a systemic approach to health workforce management

    Get PDF
    Throughout the world, countries are experiencing shortages of health care workers. Policy-makers and system managers have developed a range of methods and initiatives to optimise the available workforce and achieve the right number and mix of personnel needed to provide high-quality care. Our literature review found that such initiatives often focus more on staff types than on staff members' skills and the effective use of those skills. Our review describes evidence about the benefits and pitfalls of current approaches to human resources optimisation in health care. We conclude that in order to use human resources most effectively, health care organisations must consider a more systemic approach - one that accounts for factors beyond narrowly defined human resources management practices and includes organisational and institutional conditions

    Computational Modeling for Cardiac Resynchronization Therapy

    Get PDF
    corecore