92 research outputs found

    Re-cycling paradigms: cell cycle regulation in adult hippocampal neurogenesis and implications for depression

    Get PDF
    Since adult neurogenesis became a widely accepted phenomenon, much effort has been put in trying to understand the mechanisms involved in its regulation. In addition, the pathophysiology of several neuropsychiatric disorders, such as depression, has been associated with imbalances in adult hippocampal neurogenesis. These imbalances may ultimately reflect alterations at the cell cycle level, as a common mechanism through which intrinsic and extrinsic stimuli interact with the neurogenic niche properties. Thus, the comprehension of these regulatory mechanisms has become of major importance to disclose novel therapeutic targets. In this review, we first present a comprehensive view on the cell cycle components and mechanisms that were identified in the context of the homeostatic adult hippocampal neurogenic niche. Then, we focus on recent work regarding the cell cycle changes and signaling pathways that are responsible for the neurogenesis imbalances observed in neuropathological conditions, with a particular emphasis on depression

    Conditioned task-set competition:Neural mechanisms of emotional interference in depression

    Get PDF
    Depression has been associated with increased response times at the incongruent, neutral, and negative-word trials of the classical and emotional Stroop tasks (Epp et al., 2012). Response time slow-down effects at incongruent and negative-word trials of the Stroop tasks were reported to correlate with depressive severity, indicating strong relevance of the effects to the symptomatology. The current study proposes a novel integrative computational model of neural mechanisms of both the classical and the emotional Stroop effects, drawing on the previous prominent theoretical explanations of performance at the classical Stroop task (Cohen et al., 1990; Herd et al., 2006), and in addition suggesting that negative emotional words represent conditioned stimuli for future negative outcomes. The model is shown to explain the classical Stroop effect and the slow (between-trial) emotional Stroop effect with biologically-plausible mechanisms, providing an advantage over the previous theoretical accounts (Matthews and Harley, 1996; Wyble et al., 2008). Simulation results suggested a candidate mechanism responsible for the pattern of depressive performance at the classical and the emotional Stroop tasks. Hyperactivity of the amygdala, together with increased inhibitory influence of the amygdala over dopaminergic neurotransmission, could be at the origin of the performance deficits

    Criteria of validity for animal models of psychiatric disorders: focus on anxiety disorders and depression

    Get PDF
    Animal models of psychiatric disorders are usually discussed with regard to three criteria first elaborated by Willner; face, predictive and construct validity. Here, we draw the history of these concepts and then try to redraw and refine these criteria, using the framework of the diathesis model of depression that has been proposed by several authors. We thus propose a set of five major criteria (with sub-categories for some of them); homological validity (including species validity and strain validity), pathogenic validity (including ontopathogenic validity and triggering validity), mechanistic validity, face validity (including ethological and biomarker validity) and predictive validity (including induction and remission validity). Homological validity requires that an adequate species and strain be chosen: considering species validity, primates will be considered to have a higher score than drosophila, and considering strains, a high stress reactivity in a strain scores higher than a low stress reactivity in another strain. Pathological validity corresponds to the fact that, in order to shape pathological characteristics, the organism has been manipulated both during the developmental period (for example, maternal separation: ontopathogenic validity) and during adulthood (for example, stress: triggering validity). Mechanistic validity corresponds to the fact that the cognitive (for example, cognitive bias) or biological mechanisms (such as dysfunction of the hormonal stress axis regulation) underlying the disorder are identical in both humans and animals. Face validity corresponds to the observable behavioral (ethological validity) or biological (biomarker validity) outcomes: for example anhedonic behavior (ethological validity) or elevated corticosterone (biomarker validity). Finally, predictive validity corresponds to the identity of the relationship between the triggering factor and the outcome (induction validity) and between the effects of the treatments on the two organisms (remission validity). The relevance of this framework is then discussed regarding various animal models of depression

    Smaller total and subregional cerebellar volumes in posttraumatic stress disorder: a mega-analysis by the ENIGMA-PGC PTSD workgroup

    Get PDF
    Although the cerebellum contributes to higher-order cognitive and emotional functions relevant to posttraumatic stress disorder (PTSD), prior research on cerebellar volume in PTSD is scant, particularly when considering subregions that differentially map on to motor, cognitive, and affective functions. In a sample of 4215 adults (PTSD n = 1642; Control n = 2573) across 40 sites from the ENIGMA-PGC PTSD working group, we employed a new state-of-the-art deep-learning based approach for automatic cerebellar parcellation to obtain volumetric estimates for the total cerebellum and 28 subregions. Linear mixed effects models controlling for age, gender, intracranial volume, and site were used to compare cerebellum volumes in PTSD compared to healthy controls (88% trauma-exposed). PTSD was associated with significant grey and white matter reductions of the cerebellum. Compared to controls, people with PTSD demonstrated smaller total cerebellum volume, as well as reduced volume in subregions primarily within the posterior lobe (lobule VIIB, crus II), vermis (VI, VIII), flocculonodular lobe (lobule X), and corpus medullare (all p -FDR < 0.05). Effects of PTSD on volume were consistent, and generally more robust, when examining symptom severity rather than diagnostic status. These findings implicate regionally specific cerebellar volumetric differences in the pathophysiology of PTSD. The cerebellum appears to play an important role in higher-order cognitive and emotional processes, far beyond its historical association with vestibulomotor function. Further examination of the cerebellum in trauma-related psychopathology will help to clarify how cerebellar structure and function may disrupt cognitive and affective processes at the center of translational models for PTSD

    Positive Shifts in Emotion Evaluation Following Mindfulness-Based Cognitive Therapy (MBCT) in Remitted Depressed Participants

    Get PDF
    Objectives: A combination of negatively biased information processing and a reduced ability to experience positive emotions can persist into remission from major depression (rMDD). Studies have shown that mindfulness-based cognitive therapy (MBCT) can increase self-reported positive emotions in rMDD participants; similar changes using neuropsychological tasks have not been shown. In this study, we investigated neuropsychological change in emotional processing following MBCT in rMDD participants. Methods: Seventy-three rMDD participants, 40 of whom received MBCT and 33 of whom continued with treatment as usual (TAU), and 42 never depressed participants took part; neither the TAU nor never depressed participants received MBCT. All were assessed at baseline and immediately following MBCT or after an 8-week gap for those without active intervention. Participants completed emotion evaluation and face emotion recognition tasks with self-report measures (mood, mindfulness) at each session. Results: Results showed an MBCT-specific shift in ratings from less negative to more positive emotion evaluations, which correlated with mindfulness practice and self-report mindfulness change. Both the MBCT and TAU groups showed a small increase in overall face emotion recognition accuracy compared with no change in never depressed participants. Conclusions: These findings support a specific role for MBCT in encouraging more positive evaluations of life situations in those with previous depression rather than influencing lower-level processing of emotions. Results should be interpreted cautiously given that this was a non-randomised, preference choice trial. Trial Registration: NCT0222604

    Discovery And Replication Of Cerebral Blood Flow Differences In Major Depressive Disorder

    Get PDF
    Major depressive disorder (MDD) is a serious, heterogeneous disorder accompanied by brain-related changes, many of which are still to be discovered or refined. Arterial spin labeling (ASL) is a neuroimaging technique used to measure cerebral blood flow (CBF; perfusion) to understand brain function and detect differences among groups. CBF differences have been detected in MDD, and may reveal biosignatures of disease-state. The current work aimed to discover and replicate differences in CBF between MDD participants and healthy controls (HC) as part of the EMBARC study. Participants underwent neuroimaging at baseline, prior to starting study medication, to investigate biosignatures in MDD. Relative CBF (rCBF) was calculated and compared between 106 MDD and 36 HC EMBARC participants (whole-brain Discovery); and 58 MDD EMBARC participants and 58 HC from the DLBS study (region-of-interest Replication). Both analyses revealed reduced rCBF in the right parahippocampus, thalamus, fusiform and middle temporal gyri, as well as the left and right insula, for those with MDD relative to HC. Both samples also revealed increased rCBF in MDD relative to HC in both the left and right inferior parietal lobule, including the supramarginal and angular gyri. Cingulate and prefrontal regions did not fully replicate. Lastly, significant associations were detected between rCBF in replicated regions and clinical measures of MDD chronicity. These results (1) provide reliable evidence for ASL in detecting differences in perfusion for multiple brain regions thought to be important in MDD, and (2) highlight the potential role of using perfusion as a biosignature of MDD

    A comparison of methods to harmonize cortical thickness measurements across scanners and sites

    Get PDF
    Results of neuroimaging datasets aggregated from multiple sites may be biased by site-specific profiles in participants' demographic and clinical characteristics, as well as MRI acquisition protocols and scanning platforms. We compared the impact of four different harmonization methods on results obtained from analyses of cortical thickness data: (1) linear mixed-effects model (LME) that models site-specific random intercepts (LME INT), (2) LME that models both site-specific random intercepts and age-related random slopes (LME INT+ SLP), (3) ComBat, and (4) ComBat with a generalized additive model (ComBat-GAM). Our test case for comparing harmonization methods was cortical thickness data aggregated from 29 sites, which included 1,340 cases with posttraumatic stress disorder (PTSD) (6.2-81.8 years old) and 2,057 trauma-exposed controls without PTSD (6.3-85.2 years old). We found that, compared to the other data harmonization methods, data processed with ComBat-GAM was more sensitive to the detection of significant case-control differences (X-2 (3) = 63.704, p < 0.001) as well as casecontrol differences in age-related cortical thinning (X-2 (3) = 12.082, p = 0.007). Both ComBat and ComBat-GAM outperformed LME methods in detecting sex differences (X-2 (3) = 9.114, p = 0.028) in regional cortical thickness. ComBat-GAM also led to stronger estimates of age-related declines in cortical thickness (corrected p-values < 0.001), stronger estimates of case-related cortical thickness reduction (corrected p-values < 0.001), weaker estimates of age-related declines in cortical thickness in cases than controls (corrected p-values < 0.001), stronger estimates of cortical thickness reduction in females than males (corrected p-values < 0.001), and stronger estimates of cortical thickness reduction in females relative to males in cases than controls (corrected p-values < 0.001). Our results support the use of ComBat-GAM to minimize confounds and increase statistical power when harmonizing data with non-linear effects, and the use of either ComBat or ComBat-GAM for harmonizing data with linear effects.Stress-related psychiatric disorders across the life spa

    Verbal Learning and Memory Deficits across Neurological and Neuropsychiatric Disorders: Insights from an ENIGMA Mega Analysis

    Get PDF
    Data Availability Statement: The raw data supporting the conclusions of this article and code used for analysis will be made available by the authors on reasonable request pending appropriate study approvals and data transfer agreements between participating institutions.Supplementary Materials: The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/brainsci14070669/s1, Table S1: Inclusion/exclusion criteria for each data source; Table S2: Deficit in words recalled for each clinical condition relative to matched controls. Refs. [61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100] are cited in the Supplementary Materials.Deficits in memory performance have been linked to a wide range of neurological and neuropsychiatric conditions. While many studies have assessed the memory impacts of individual conditions, this study considers a broader perspective by evaluating how memory recall is differentially associated with nine common neuropsychiatric conditions using data drawn from 55 international studies, aggregating 15,883 unique participants aged 15–90. The effects of dementia, mild cognitive impairment, Parkinson’s disease, traumatic brain injury, stroke, depression, attention-deficit/hyperactivity disorder (ADHD), schizophrenia, and bipolar disorder on immediate, short-, and long-delay verbal learning and memory (VLM) scores were estimated relative to matched healthy individuals. Random forest models identified age, years of education, and site as important VLM covariates. A Bayesian harmonization approach was used to isolate and remove site effects. Regression estimated the adjusted association of each clinical group with VLM scores. Memory deficits were strongly associated with dementia and schizophrenia (p 0.05). Differences associated with clinical conditions were larger for longer delayed recall duration items. By comparing VLM across clinical conditions, this study provides a foundation for enhanced diagnostic precision and offers new insights into disease management of comorbid disorders.This research was funded by the Psychological Health/Traumatic Brain Injury Research Program Long-Term Impact of Military Relevant Brain Injury Consortium (LIMBIC), Grant/Award Numbers: W81XWH18PH, TBIRPLIMBIC under Awards Numbers: W81XWH1920067 and W81XWH1320095; US Department of Defense, Grant/Award Number: AZ150145; US Department of Veterans Affairs, Grant/Award Numbers: I01 CX002097, I01 CX002096, I01 HX003155, I01 RX003444, I01 RX003443, I01 RX003442, I01 CX001135, I01 CX001246, I01 RX001774, I01 RX001135, I01 RX002076, I01 RX001880, I01 RX002172, I01 RX002173, I01 RX002171, I01 RX002174, I01 RX002170, 1I01 RX003444; National Institutes of Health (NIH), Grant/Award Number(s): RF1NS115268, RF1NS128961, U01NS086625, U01MH124639, P50MH115846, R01MH113827, R25MH080663, K08MH068540, R01NS100973, R01EB006841, P20GM103472, RO1MH083553, T32MH019535, R01 HD061504, RO1MH083553, R01AG050595, R01AG076838, R01AG060470, R01AG064955, P01AG055367, K23MH095661, R01MH094524, R01MH121246, T32MH019535, R01NS124585, R01NS122827, R61NS120249, R01NS122184, U54EB020403, R01MH116147, R56AG058854, P41EB015922, R01MH111671, P41RR14075, M01RR01066, R01EB006841, R01EB005846, R01 EB000840, RC1MH089257, U24 RR021992, and NCRR 5 month-RR001066 (MGH General Clinical Research Center); National Institute of Mental Health (NIMH), Grant/Award Number: 1P20RR021938; Spanish Ministry of Science and Innovation, Instituto de Salud Carlos III, Grant/Award Numbers: PI15-00852, PI18-00945, JR19-00024, PI17-00481, PI20-00721; Sara Borrell contract, Grant/Award Number: CD19-00149; German Research Foundation DFG grant FOR2107, Grant/Award Numbers: JA 1890/7-1, JA 1890/7-2, NE2254/1-2, NE2254/2-1, NE2254/3-1, NE2254/4-1, KI588/14-1, KI588/14-2, DA1151/5-1, DA1151/5-2, SFB-TRR58, Projects C09 and Z02; European Union, NextGenerationEU, Grant/Award Numbers: PMP21/00051, PI19/01024; Structural Funds; Seventh Framework Program; H2020 Program under the Innovative Medicines Initiative 2 Joint Undertaking: Project PRISM-2, Grant/Award Number: 101034377; Project AIMS-2-TRIALS, Grant/Award Number: 777394; Horizon Europe; NSF, Grant/Award Number: 2112455; Madrid Regional Government, Grant/Award Number: B2017/BMD-3740 AGES-CM-2; Dalhousie Medical Research Foundation; Research Nova Scotia, Grant/Award Number: RNS-NHIG-2021-1931; NJ Commission on TBI Research Grants, Grant/Award Numbers: CBIR11PJT020, CBIR13IRG026; Department of Psychology, University of Oslo; Sunnaas Rehabilitation Hospital, Grant/Award Number: HF F32NS119285; Canadian Institutes of Health Research, Grant/Award Number: 166098; Neurological Foundation of New Zealand, Grant/Award Number: 2232 PRG; Canterbury Medical Research Foundation, University of Otago; Biogen US Investigator-initiated grant; Italian Ministry of Health, Grant/Award Number: RF-2019-12370182 and Ricerca Corrente RC 23; National Institute on Aging; National Health and Medical Research Council, Investigator Grant/Award Number: APP1176426; PA Health Research, Grant/Award Number: 4100077082; La Caixa Foundation, Grant/Award Number: 100010434, fellowship code: LCF/BQ/PR22/11920017; Research Council of Norway, Grant/Award Number: 248238; Health Research Council of New Zealand Sir Charles Hercus Early Career Development, Grant/Award Numbers: 17/039 and 14-440; Health Research Council of New Zealand, Grant/Award Numbers: 20/538 and 14/440; Research and Education Trust Pacific Radiology, Grant/Award Number: MRIJDA; South-Eastern Norway Regional Health Authority, Grant/Award Number: 2018076; Norwegian ExtraFoundation for Health and Rehabilitation, Grant/Award Numbers: 2015/FO5146; South-Eastern Norway Regional Health Authority, Grant/Award Number: 2015044; Stiftelsen K.G. Jebsen, Grant/Award Number: SKGJ MED-02; The Liaison Committee between Central Norway Regional Health Authority (RHA) and the Norwegian University of Science and Technology (NTNU), Grant/Award Number: 2020/39645; National Health and Medical Research Council, Grant/Award Number: APP1020526; Brain Foundation; Wicking Trust; Collie Trust; Sidney and Fiona Myer Family Foundation; U.S. Army Medical Research and Materiel Command (USAMRMC), Grant/Award Number: 13129004; Department of Energy, Grant/Award Number: DE-FG02-99ER62764; Mind Research Network; National Association for Research in Schizophrenia and Affective Disorders, Young Investigator Award; Blowitz Ridgeway and Essel Foundations; Interdisciplinary Center for Clinical Research (IZKF) of the medical faculty of Münster; NOW ZonMw TOP, Grant/Award Number: 91211021; UCLA Easton Clinic for Brain Health; UCLA Brain Injury Research Center; Stan and Patty Silver; Clinical and Translational Research Center, Grant/Award Numbers: UL1RR033176, UL1TR000124; Mount Sinai Institute for NeuroAIDS Disparities; VA Rehab SPIRE; CDMRP PRAP; VA RR&D, Grant/Award Number: IK2RX002922; Veski Fellowship; Femino Foundation grant; Fundación Familia Alonso; Fundación Alicia Koplowitz; CIBERSAM, Madrid Regional Government, Grant/Award Numbers: B2017/BMD-3740 AGES-CM-2, 2019R1C1C1002457, 21-BR-03-01, 2020M3E5D9079910, 21-BR-03-01; Deutsche Forschungsgemeinschaft (DFG), Grant/Award Numbers: NE2254/1-2, NE2254/2-1, NE2254/3-1, NE2254/4-1
    corecore