9 research outputs found

    Field site selection: getting it right first time around

    Get PDF
    The selection of suitable field sites for integrated control of Anopheles mosquitoes using the sterile insect technique (SIT) requires consideration of the full gamut of factors facing most proposed control strategies, but four criteria identify an ideal site: 1) a single malaria vector, 2) an unstructured, relatively low density target population, 3) isolation of the target population and 4) actual or potential malaria incidence. Such a site can exist in a diverse range of situations or can be created. Two contrasting SIT field sites are examined here: the desert-flanked Dongola Reach of the Nile River in Northern State, Sudan, where malaria is endemic, and the island of La Reunion, where autochthonous malaria is rare but risk is persistent. The single malaria-transmitting vector at both sites is Anopheles arabiensis. In Sudan, the target area is a narrow 500 km corridor stretching from the rocky terrain at the Fourth Cataract - just above the new Merowe Dam, to the northernmost edge of the species range, close to Egypt. Vector distribution and temporal changes in density depend on the Nile level, ambient temperature and human activities. On La Reunion, the An. arabiensis population is coastal, limited and divided into three areas by altitude and exposure to the trade winds on the east coast. Mosquito vectors for other diseases are an issue at both sites, but of primary importance on La Reunion due to the recent chikungunya epidemic. The similarities and differences between these two sites in terms of suitability are discussed in the context of area-wide integrated vector management incorporating the SIT

    Male Mating Competitiveness of a Wolbachia-Introgressed Aedes polynesiensis Strain under Semi-Field Conditions

    Get PDF
    Aedes polynesiensis is the primary mosquito vector of lymphatic filariasis (LF) in the island nations of the South Pacific. Control of LF in this region of the world is difficult due to the unique biology of the mosquito vector. A proposed method to control LF in the Pacific is through the release of male mosquitoes that are effectively sterile. In order for this approach to be successful, it is critical that the modified male mosquitoes be able to compete with wild type male mosquitoes for female mates. In this study the authors examined the mating competitiveness of modified males under semi-field conditions. Modified males were released into field cages holding field-collected, virgin females and field collected wild type males. The resulting proportion of eggs that hatched was inversely related to the number of modified males released into the cage, which is consistent with the hypothesized competitiveness of modified males against indigenous males. The outcome indicates that mass release of modified A. polynesiensis mosquitoes could result in the suppression of A. polynesiensis populations and supports the continued development of applied strategies for suppression of this important disease vector

    Mosquitoes host communities of bacteria that are essential for development but vary greatly between local habitats

    No full text
    Mosquitoes are insects of interest because several species vector disease-causing pathogens to humans and other vertebrates. We previously reported that mosquitoes from long-term laboratory cultures require living bacteria in their gut to develop, but development does not depend on particular species of bacteria. Here, we focused on three distinct but interrelated areas of study to better understand the role of bacteria in mosquito development by studying field and laboratory populations of Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus from the Southeastern United States. Sequence analysis of bacterial 16S rRNA gene amplicons showed that bacteria community composition differed substantially in larvae from different collection sites, whereas larvae from the same site shared similarities. Although previously unknown to be infected by Wolbachia, results also indicated that Ae. aegypti from one field site hosted a dual infection. Regardless of collection site or factors like Wolbachia infection, however, each mosquito species required living bacteria in their digestive tract to develop. Results also identified several concerns in using antibiotics to eliminate the bacterial community in larvae in order to study its developmental consequences. Altogether, our results indicate that several mosquito species require living bacteria for development. We also hypothesize these species do not rely on particular bacteria because larvae do not reliably encounter the same bacteria in the aquatic habitats they colonize

    Sampling the Adult Resting Population

    No full text
    corecore