22 research outputs found

    Continuous low- to moderate-intensity exercise training is as effective as moderate- to high-intensity exercise training at lowering blood HbA1c in obese type 2 diabetes patients

    Get PDF
    Aims/hypothesis: Exercise represents an effective interventional strategy to improve glycaemic control in type 2 diabetes patients. However, the impact of exercise intensity on the benefits of exercise training remains to be established. In the present study, we compared the clinical benefits of 6 months of continuous low- to moderate-intensity exercise training with those of continuous moderate- to high-intensity exercise training, matched for energy expenditure, in obese type 2 diabetes patients. Methods: Fifty male obese type 2 diabetes patients (age 59∈±∈8 years, BMI 32∈± ∈4 kg/m2) participated in a 6 month continuous endurance-type exercise training programme. All participants performed three supervised exercise sessions per week, either 55 min at 50% of whole body peak oxygen uptake left(VO2peak) (low to moderate intensity) or 40 min at 75% of VO2peak (moderate to high intensity). Oral glucose tolerance, blood glycated haemoglobin, lipid profile, body composition, maximal workload capacity, whole body and skeletal muscle oxidative capacity and skeletal muscle fibre type composition were assessed before and after 2 and 6 months of intervention. Results: The entire 6 month intervention programme was completed by 37 participants. Continuous endurance-type exercise training reduced blood glycated haemoglobin levels, LDL-cholesterol concentrations, body weight and leg fat mass, and increased VO2peak, lean muscle mass and skeletal muscle cytochrome c oxidase and citrate synthase activity (p∈<∈0. 05). No differences were observed between the groups training at low to moderate or moderate to high intensity. Conclusions/interpretation: When matched for energy cost, prolonged continuous low- to moderate-intensity endurance-type exercise training is equally effective as continuous moderate- to high-intensity training in lowering blood glycated haemoglobin and increasing whole body and skeletal muscle oxidative capacity in obese type 2 diabetes patients. © 2009 Springer-Verlag

    Exercise therapy for Type 2 Diabetes

    No full text

    Exercise therapy for Type 2 Diabetes

    No full text

    A steep ramp test is valid for estimating maximal power and oxygen uptake during a standard ramp test in type 2 diabetes

    No full text
    A short maximal steep ramp test (SRT, 25 W/10 s) has been proposed to guide exercise interventions in type 2 diabetes, but requires validation. This study aims to (a) determine the relationship between Wmax and V˙O2peak reached during SRT and the standard ramp test (RT); (b) obtain test-retest reliability; and (c) document electrocardiogram (ECG) abnormalities during SRT. Type 2 diabetes patients (35 men, 26 women) performed a cycle ergometer-based RT (women 1.2; men 1.8 W/6 s) and SRT on separate days. A random subgroup (n = 42) repeated the SRT. ECG, heart rate, and V˙O2 were monitored. Wmax during RT: 193 ± 63 (men) and 106 ± 33 W (women). Wmax during SRT: 193 ± 63 (men) and 188 ± 55 W (women). The relationship between RT and SRT was described by men RT V˙O2peak (mL/min) = 152 + 7.67 × Wmax SRT1 (r: 0.859); women RT V ˙ O 2 p e a k (mL/min) = 603 + 4.75 × Wmax SRT1 (r: 0.771); intraclass correlation coefficients between first (SRT1) and second SRT Wmax (SRT2) were men 0.951 [95% confidence interval (CI) 0.899-0.977] and women 0.908 (95% CI 0.727-0.971). No adverse events were noted during any of the exercise tests. This validation study indicates that the SRT is a low-risk, accurate, and reliable test to estimate maximal aerobic capacity during the RT to design exercise interventions in type 2 diabetes patients.status: publishe

    A steep ramp test is valid for estimating maximal power and oxygen uptake during a standard ramp test in type 2 diabetes

    No full text
    A short maximal steep ramp test (SRT, 25 W/10 s) has been proposed to guide exercise interventions in type 2 diabetes, but requires validation. This study aims to (a) determine the relationship between W-max and (V) over dotO(2)peak reached during SRT and the standard ramp test (RT); (b) obtain test-retest reliability; and (c) document electrocardiogram (ECG) abnormalities during SRT. Type 2 diabetes patients (35 men, 26 women) performed a cycle ergometer-based RT (women 1.2; men 1.8 W/6 s) and SRT on separate days. A random subgroup (n = 42) repeated the SRT. ECG, heart rate, and (V) over dotO(2) were monitored. W-max during RT: 193 +/- 63 (men) and 106 +/- 33 W (women). W-max during SRT: 193 +/- 63 (men) and 188 +/- 55 W (women). The relationship between RT and SRT was described by men RT (V) over dotO(2)peak (mL/min) = 152 + 7.67 x W-max SRT1 (r: 0.859); women RT (V) over dotO(2)peak (mL/min) = 603 + 4.75 x W-max SRT1 (r: 0.771); intraclass correlation coefficients between first (SRT1) and second SRT W-max (SRT2) were men 0.951 [ 95% confidence interval (CI) 0.899-0.977] and women 0.908 (95% CI 0.727-0.971). No adverse events were noted during any of the exercise tests. This validation study indicates that the SRT is a low-risk, accurate, and reliable test to estimate maximal aerobic capacity during the RT to design exercise interventions in type 2 diabetes patients
    corecore