823 research outputs found

    Impact of Seawater Temperature on Coral Reefs in the Context of Climate Change. A Case Study of Cu Lao Cham – Hoi An Biosphere Reserve

    Get PDF
    Coral reefs are a natural habitat for many species, as well as being of high economic and touristic significance. However, they represent an extremely sensitive ecosystem with a narrow ecological limit: prolonged high temperatures can lead to bleaching, in which corals expel their symbiotic algae and eventually corals will degrade and die. Based on climate change projections from the Blue Communities regional model, using linear regression, exponential regression, polynomial regression, we found that by the decades 2041–2050 and 2051–2060, whether with RCP 4.5 or RCP 8.5, the environmental temperature will change beyond the coral capacity threshold. Of particular concern is RCP 8.5, where the number of weeks per decade in which SST exceeds the threshold of coral reef bleaching is up to 55, compared to 0 at the beginning of the century. As well, the El Niño phenomenon often heats up waters to abnormally high temperatures in Cu Lao Cham and, it is projected to rise even further. Consequently, the combination of climate change and El Niño will cause abnormal increases in the seawater environment beyond the coral resistance threshold, leading to degradation of this internationally important site. Decisive and practical action must be taken to deal with climate change in this part of the world

    The influence of perfusion solution on renal graft viability assessment

    Get PDF
    BACKGROUND: Kidneys from donors after cardiac or circulatory death are exposed to extended periods of both warm ischemia and intra-arterial cooling before organ recovery. Marshall’s hypertonic citrate (HOC) and Bretschneider’s histidine-tryptophan-ketoglutarate (HTK) preservation solutions are cheap, low viscosity preservation solutions used clinically for organ flushing. The aim of the present study was to evaluate the effects of these two solutions both on parameters used in clinical practice to assess organ viability prior to transplantation and histological evidence of ischemic injury after reperfusion. METHODS: Rodent kidneys were exposed to post-mortem warm ischemia, extended intra-arterial cooling (IAC) (up to 2 h) with preservation solution and reperfusion with either Krebs-Hensleit or whole blood in a transplant model. Control kidneys were either reperfused directly after retrieval or stored in 0.9% saline. Biochemical, immunological and histological parameters were assessed using glutathione-S-transferase (GST) enzymatic assays, polymerase chain reaction and mitochondrial electron microscopy respectively. Vascular function was assessed by supplementing the Krebs-Hensleit perfusion solution with phenylephrine to stimulate smooth muscle contraction followed by acetylcholine to trigger endothelial dependent relaxation. RESULTS: When compared with kidneys reperfused directly post mortem, 2 h of IAC significantly reduced smooth muscle contractile function, endothelial function and upregulated vascular cellular adhesion molecule type 1 (VCAM-1) independent of the preservation solution. However, GST release, vascular resistance, weight gain and histological mitochondrial injury were dependent on the preservation solution used. CONCLUSIONS: We conclude that initial machine perfusion viability tests, including ischemic vascular resistance and GST, are dependent on the perfusion solution used during in situ cooling. HTK-perfused kidneys will be heavier, have higher GST readings and yet reduced mitochondrial ischemic injury when compared with HOC-perfused kidneys. Clinicians should be aware of this when deciding which kidneys to transplant or discard

    Climate-smart spatial planning assessment in support of conservation and blue growth in Da Nang city’s marine environment.

    Get PDF
    This study assessed ocean climate modelling datasets to establish what sensitivities to climate change could be identified for species of commercial and conservation value in the waters of Da Nang City, Vietnam, and what actions could be taken to support their adaptation to these pressures. Commissioned via the UK Research Councils Official Development Assistance national Capability funded project ‘Addressing Challenges of Coastal Communities through Ocean Research for Developing Economies’ (ACCORD), and co-developed with the Da Nang Da Nang Department of Natural Resources and Environment with the support of PEMSEA, our main ambition was to highlight what spatial management activities could be undertaken in the waters off the city to support climate change adaptation in its resources. We identified substantial sensitivities of species of commercial and conservation value across the whole bay and its offshore waters to climate change under increasing global greenhouse emissions. For species that occupy the water column (as opposed t the seabed), this sensitivity appeared to be concentrated in the southern part of the bay. Importantly, fishing pressure exacerbated the pressure of climate change on pelagic target species, highlighting the challenges of delivering food security and a growing blue economy imposed by a changing climate. Additionally, lowered emissions, in line with the Paris Agreement, would deliver clear benefits to all types of species assessed, supporting a more sustainable path for the exploration of Da Nang’s marine resources and it’s blue economy. Recommendations are made about how the Coastal Use Zoning Plan for Da Nang City could be adapted to support climate change adaptation in these species and habitats, and well as the broader sustainability of these ecosystems

    Mendelian randomization study of B-type natriuretic peptide and type 2 diabetes: evidence of causal association from population studies

    Get PDF
    <p>Background: Genetic and epidemiological evidence suggests an inverse association between B-type natriuretic peptide (BNP) levels in blood and risk of type 2 diabetes (T2D), but the prospective association of BNP with T2D is uncertain, and it is unclear whether the association is confounded.</p> <p>Methods and Findings: We analysed the association between levels of the N-terminal fragment of pro-BNP (NT-pro-BNP) in blood and risk of incident T2D in a prospective case-cohort study and genotyped the variant rs198389 within the BNP locus in three T2D case-control studies. We combined our results with existing data in a meta-analysis of 11 case-control studies. Using a Mendelian randomization approach, we compared the observed association between rs198389 and T2D to that expected from the NT-pro-BNP level to T2D association and the NT-pro-BNP difference per C allele of rs198389. In participants of our case-cohort study who were free of T2D and cardiovascular disease at baseline, we observed a 21% (95% CI 3%-36%) decreased risk of incident T2D per one standard deviation (SD) higher log-transformed NT-pro-BNP levels in analysis adjusted for age, sex, body mass index, systolic blood pressure, smoking, family history of T2D, history of hypertension, and levels of triglycerides, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol. The association between rs198389 and T2D observed in case-control studies (odds ratio = 0.94 per C allele, 95% CI 0.91-0.97) was similar to that expected (0.96, 0.93-0.98) based on the pooled estimate for the log-NT-pro-BNP level to T2D association derived from a meta-analysis of our study and published data (hazard ratio = 0.82 per SD, 0.74-0.90) and the difference in NT-pro-BNP levels (0.22 SD, 0.15-0.29) per C allele of rs198389. No significant associations were observed between the rs198389 genotype and potential confounders.</p> <p>Conclusions: Our results provide evidence for a potential causal role of the BNP system in the aetiology of T2D. Further studies are needed to investigate the mechanisms underlying this association and possibilities for preventive interventions.</p&gt

    Incorporating climate-readiness into fisheries management strategies

    Get PDF
    Tropical oceans are among the first places to exhibit climate change signals, affecting the habitat distribution and abundance of marine fish. These changes to stocks, and subsequent impacts on fisheries production, may have considerable implications for coastal communities dependent on fisheries for food security and livelihoods. Understanding the impacts of climate change on tropical marine fisheries is therefore an important step towards developing sustainable, climate-ready fisheries management measures. We apply an established method of spatial meta-analysis to assess species distribution modelling datasets for key species targeted by the Philippines capture fisheries. We analysed datasets under two global emissions scenarios (RCP4.5 and RCP8.5) and varying degrees of fishing pressure to quantify potential climate vulnerability of the target community. We found widespread responses to climate change in pelagic species in particular, with abundances projected to decline across much of the case study area, highlighting the challenges of maintaining food security in the face of a rapidly changing climate. We argue that sustainable fisheries management in the Philippines in the face of climate change can only be achieved through management strategies that allow for the mitigation of, and adaptation to, pressures already locked into the climate system for the near term. Our analysis may support this, providing fisheries managers with the means to identify potential climate change hotspots, bright spots and refugia, thereby supporting the development of climate-ready management plans

    Bright spots as climate‐smart marine spatial planning tools for conservation and blue growth

    Get PDF
    Marine spatial planning that addresses ocean climate-driven change (‘climate-smart MSP’) is a global aspiration to support economic growth, food security and ecosystem sustainability. Ocean climate change (‘CC’) modelling may become a key decision-support tool for MSP, but traditional modelling analysis and communication challenges prevent their broad uptake. We employed MSP-specific ocean climate modelling analyses to inform a real-life MSP process; addressing how nature conservation and fisheries could be adapted to CC. We found that the currently planned distribution of these activities may become unsustainable during the policy's implementation due to CC, leading to a shortfall in its sustainability and blue growth targets. Significant, climate-driven ecosystem-level shifts in ocean components underpinning designated sites and fishing activity were estimated, reflecting different magnitudes of shifts in benthic versus pelagic, and inshore versus offshore habitats. Supporting adaptation, we then identified: CC refugia (areas where the ecosystem remains within the boundaries of its present state); CC hotspots (where climate drives the ecosystem towards a new state, inconsistent with each sectors’ present use distribution); and for the first time, identified bright spots (areas where oceanographic processes drive range expansion opportunities that may support sustainable growth in the medium term). We thus create the means to: identify where sector-relevant ecosystem change is attributable to CC; incorporate resilient delivery of conservation and sustainable ecosystem management aims into MSP; and to harness opportunities for blue growth where they exist. Capturing CC bright spots alongside refugia within protected areas may present important opportunities to meet sustainability targets while helping support the fishing sector in a changing climate. By capitalizing on the natural distribution of climate resilience within ocean ecosystems, such climate-adaptive spatial management strategies could be seen as nature-based solutions to limit the impact of CC on ocean ecosystems and dependent blue economy sectors, paving the way for climate-smart MSP

    Measurement of the branching fraction and CP content for the decay B(0) -> D(*+)D(*-)

    Get PDF
    This is the pre-print version of the Article. The official published version can be accessed from the links below. Copyright @ 2002 APS.We report a measurement of the branching fraction of the decay B0→D*+D*- and of the CP-odd component of its final state using the BABAR detector. With data corresponding to an integrated luminosity of 20.4  fb-1 collected at the Υ(4S) resonance during 1999–2000, we have reconstructed 38 candidate signal events in the mode B0→D*+D*- with an estimated background of 6.2±0.5 events. From these events, we determine the branching fraction to be B(B0→D*+D*-)=[8.3±1.6(stat)±1.2(syst)]×10-4. The measured CP-odd fraction of the final state is 0.22±0.18(stat)±0.03(syst).This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the A.P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation
    corecore