17 research outputs found

    Increased chromosomal stability in cultures of ovarian tumours of low malignant potential compared to cystadenomas

    Get PDF
    Cell cultures of ovarian cystadenomas transfected with SV40 large T antigen are not immortal because they invariably reach a phenomenon called crisis, which is triggered in part by telomere attrition. Recovery from crisis may be an integral component of the malignant transformation process. We reported earlier that such ovarian cystadenoma cell cultures undergo severe changes in DNA ploidy as they approach crisis and that such changes are an important determinant of crisis independent of telomere attrition. Here, we show that in sharp contrast to these benign ovarian tumours, the DNA content of ovarian tumours of low malignant potential (LMP) was remarkably stable as they approached crisis, suggesting that telomere attrition was the main determinant of this mortality checkpoint. Lack of a ploidy-based crisis was not due to loss of expression of a functional SV40 large T antigen protein. We conclude that ovarian LMP tumours are characterised by increased numerical chromosomal stability compared to cystadenomas. This might account for the fact that most LMP tumours are diploid or near diploid in vivo. This fundamental difference in chromosomal stability between ovarian cystadenomas and LMP tumours also suggests potential differences in predisposition to progression to malignancy between these two ovarian tumour subtypes

    Conserved effects of salinity acclimation on thermal tolerance and hsp70 expression in divergent populations of threespine stickleback (Gasterosteus aculeatus)

    No full text
    In natural environments, organisms must cope with complex combinations of abiotic stressors. Here, we use threespine stickleback (Gasterosteus aculeatus) to examine how changes in salinity affect tolerance of high temperatures. Threespine stickleback inhabit a range of environments that vary in both salinity and thermal stability making this species an excellent system for investigating interacting stressors. We examined the effects of environmental salinity on maximum thermal tolerance (CTMax) and 70 kDa heat shock protein (hsp70) gene expression using divergent stickleback ecotypes from marine and freshwater habitats. In both ecotypes, the CTMax of fish acclimated to 20 ppt was significantly higher compared to fish acclimated to 2 ppt. The effect of salinity acclimation on the expression of hsp70-1 and hsp70-2 was similar in both the marine and freshwater stickleback ecotype. There were differences in the expression profiles of hsp70-1 and hsp70-2 during heat shock, with hsp70-2 being induced earlier and to a higher level compared to hsp70-1. These data suggest that the two hsp70 isoforms may have functionally different roles in the heat shock response. Lastly, acute salinity challenge coupled with heat shock revealed that the osmoregulatory demands experienced during the heat shock response have a larger effect on the hsp70 expression profile than does the acclimation salinity

    Exposure of gnotobiotic Artemia franciscana larvae to abiotic stress promotes heat shock protein 70 synthesis and enhances resistance to pathogenic Vibrio campbellii

    No full text
    Larvae of the brine shrimp Artemia franciscana serve as important feed in fish and shellfish larviculture; however, they are subject to bacterial diseases that devastate entire populations and consequently hinder their use in aquaculture. Exposure to abiotic stress was shown previously to shield Artemia larvae against infection by pathogenic Vibrio, with the results suggesting a mechanistic role for heat shock protein 70. In the current report, combined hypothermic/hyperthermic shock followed by recovery at ambient temperature induced Hsp70 synthesis in Artemia larvae. Thermotolerance was also increased as was protection against infection by Vibrio campbellii, the latter indicated by reduced mortality and lower bacterial load in challenge tests. Resistance to Vibrio improved in the face of declining body mass as demonstrated by measurement of ash-free dry weight. Hypothermic stress only and acute osmotic insult did not promote Hsp70 expression and thermotolerance in Artemia larvae nor was resistance to Vibrio challenge augmented. The data support a causal link between Hsp70 accumulation induced by abiotic stress and enhanced resistance to infection by V. campbellii, perhaps via stimulation of the Artemia immune system. This possibility is now under investigation, and the work may reveal fundamental properties of crustacean immunity. Additionally, the findings are important in aquaculture where development of procedures to prevent bacterial infection of feed stock such as Artemia larvae is a priority
    corecore