456 research outputs found

    Optimizing genomic medicine in epilepsy through a gene-customized approach to missense variant interpretation

    Get PDF
    Gene panel and exome sequencing have revealed a high rate of molecular diagnoses among diseases where the genetic architecture has proven suitable for sequencing approaches, with a large number of distinct and highly penetrant causal variants identified among a growing list of disease genes. The challenge is, given the DNA sequence of a new patient, to distinguish disease-causing from benign variants. Large samples of human standing variation data highlight regional variation in the tolerance to missense variation within the protein-coding sequence of genes. This information is not well captured by existing bioinformatic tools, but is effective in improving variant interpretation. To address this limitation in existing tools, we introduce the missense tolerance ratio (MTR), which summarizes available human standing variation data within genes to encapsulate population level genetic variation. We find that patient-ascertained pathogenic variants preferentially cluster in low MTR regions (P < 0.005) of well-informed genes. By evaluating 20 publicly available predictive tools across genes linked to epilepsy, we also highlight the importance of understanding the empirical null distribution of existing prediction tools, as these vary across genes. Subsequently integrating the MTR with the empirically selected bioinformatic tools in a gene-specific approach demonstrates a clear improvement in the ability to predict pathogenic missense variants from background missense variation in disease genes. Among an independent test sample of case and control missense variants, case variants (0.83 median score) consistently achieve higher pathogenicity prediction probabilities than control variants (0.02 median score; Mann-Whitney U test, P < 1 × 10(-16)). We focus on the application to epilepsy genes; however, the framework is applicable to disease genes beyond epilepsy

    ILAE Genetic Literacy Series: Postmorterm Genetic Testing in Sudden Unexpected Death in Epilepsy

    Get PDF
    A 24-year-old man with non-lesional bitemporal lobe epilepsy since age 16 years was found dead in bed around midday. He was last seen the previous night when he was witnessed to have a tonic–clonic seizure. Before his death, he was experiencing weekly focal impaired awareness seizures and up to two focal-to-bilateral tonic–clonic seizures each year. He had trialed several antiseizure medications and was on levetiracetam 1500 mg/day, lamotrigine 400 mg/day, and clobazam 10 mg/day at the time of death. Other than epilepsy, his medical history was unremarkable. Of note, he had an older brother with a history of febrile seizures and a paternal first cousin with epilepsy. No cause of death was identified following a comprehensive postmortem investigation. The coroner classified the death as “sudden unexpected death in epilepsy” (SUDEP), and it would qualify as “definite SUDEP” using the current definitions.1 This left the family with many questions unanswered; in particular, they wish to know what caused the death and whether it could happen to other family members. Could postmortem genetic testing identify a cause of death, provide closure to the family, and facilitate cascade genetic testing of first-degree family members who may be at risk of sudden death? While grieving family members struggle with uncertainty about the cause of death, we as clinicians also face similar uncertainties about genetic contributions to SUDEP, especially when the literature is sparse, and the utility of genetic testing is still being worked out. We aim to shed some light on this topic, highlighting areas where data is emerging but also areas where uncertainty remains, keeping our case in mind as we examine this clinically important area

    ILAE Genetic Literacy Series: Self-limited familial epilepsy syndromes with onset in neonatal age and infancy

    Get PDF
    The self-limited (familial) epilepsies with onset in neonates or infants, formerly called benign familial neonatal and/or infantile epilepsies, are autosomal dominant disorders characterized by neonatal- or infantile-onset focal motor seizures and the absence of neurodevelopmental complications. Seizures tend to remit during infancy or early childhood and are therefore called “self-limited”. A positive family history for epilepsy usually suggests the genetic etiology, but incomplete penetrance and de novo inheritance occur. Here, we review the phenotypic spectrum and the genetic architecture of self-limited (familial) epilepsies with onset in neonates or infants. Using an illustrative case study, we describe important clues in recognition of these syndromes, diagnostic steps including genetic testing, management, and genetic counseling

    Hypothalamic Hamartomas: Evolving Understanding and Management

    Get PDF
    Hypothalamic hamartomas (HH) are rare, basilar developmental lesions with widespread comorbidities often associated with refractory epilepsy and encephalopathy. Imaging advances allow for early, even prenatal, detection. Genetic studies suggest mutations in GLI3 and other patterning genes are involved in HH pathogenesis. About 50-80% of children with HH suffer from severe rage and aggression and a majority of cases exhibit externalizing disorders. Behavioral disruption and intellectual disability may predate epilepsy. Neuropsychological, sleep and endocrine disorders are typical. The purpose of this paper is to provide a summary of the current understanding of HH, and to highlight opportunities for future research

    Diagnosis and misdiagnosis of adult neuronal ceroid lipofuscinosis (Kufs disease)

    Get PDF
    OBJECTIVE: To critically re-evaluate cases diagnosed as adult neuronal ceroid lipofuscinosis (ANCL) in order to aid clinicopathologic diagnosis as a route to further gene discovery. METHODS: Through establishment of an international consortium we pooled 47 unsolved cases regarded by referring centers as ANCL. Clinical and neuropathologic experts within the Consortium established diagnostic criteria for ANCL based on the literature to assess each case. A panel of 3 neuropathologists independently reviewed source pathologic data. Cases were given a final clinicopathologic classification of definite ANCL, probable ANCL, possible ANCL, or not ANCL. RESULTS: Of the 47 cases, only 16 fulfilled the Consortium's criteria of ANCL (5 definite, 2 probable, 9 possible). Definitive alternate diagnoses were made in 10, including Huntington disease, early-onset Alzheimer disease, Niemann-Pick disease, neuroserpinopathy, prion disease, and neurodegeneration with brain iron accumulation. Six cases had features suggesting an alternate diagnosis, but no specific condition was identified; in 15, the data were inadequate for classification. Misinterpretation of normal lipofuscin as abnormal storage material was the commonest cause of misdiagnosis. CONCLUSIONS: Diagnosis of ANCL remains challenging; expert pathologic analysis and recent molecular genetic advances revealed misdiagnoses in >1/3 of cases. We now have a refined group of cases that will facilitate identification of new causative genes

    Intrathecal injection of human umbilical cord blood-derived mesenchymal stem cells for the treatment of basilar artery dissection: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Basilar artery dissection is a rare occurrence, and is significantly associated with morbidity and mortality. To the best of our knowledge, we report the first case of basilar artery dissection treated with mesenchymal stem cells.</p> <p>Case presentation</p> <p>We present the case of a 17-year-old Korean man who was diagnosed with basilar artery dissection. Infarction of the bilateral pons, midbrain and right superior cerebellum due to his basilar artery dissection was partially recanalized by intrathecal injection of human umbilical cord blood-derived mesenchymal stem cells. No immunosuppressants were given to our patient, and human leukocyte antigen alloantibodies were not detected after cell therapy.</p> <p>Conclusions</p> <p>This case indicates that intrathecal injections of mesenchymal stem cells can be used in the treatment of basilar artery dissection.</p

    Postictal Psychosis in Epilepsy: A Clinicogenetic Study

    Get PDF
    OBJECTIVE: Psychoses affecting people with epilepsy increase disease burden and diminish quality of life. We characterised post-ictal psychosis, which comprises about one-quarter of epilepsy-related psychoses, and has unknown causation. METHODS: We conducted a case-control cohort study including patients diagnosed with post-ictal psychosis, confirmed by psychiatric assessment, with available data regarding epilepsy, treatment, psychiatric history, psychosis profile and outcomes. After screening 3,288 epilepsy patients, we identified 83 with psychosis: 49 had post-ictal psychosis. Controls were 98 adults, matched by age and epilepsy type, with no history of psychosis. Logistic regression was used to investigate clinical factors associated with post-ictal psychosis; univariate associations with a P-value<0.20 were used to build a multivariate model. Polygenic risk scores for schizophrenia were calculated. RESULTS: Cases were more likely to have seizure clustering (OR 7.59, P<0.001), seizures with a recollected aura (OR 2.49, P=0.013) and a family history of psychiatric disease (OR 5.17, P=0.022). Cases showed predominance of right temporal epileptiform discharges (OR 4.87, P=0.007). There was no difference in epilepsy duration, neuroimaging findings or anti-seizure treatment between cases and controls. Polygenic risk scores for schizophrenia in an extended cohort of post-ictal psychosis cases (58) were significantly higher than in 1,366 epilepsy controls (R2 =3%, P=6x10-3 ), but not significantly different from 945 independent patients with schizophrenia (R2 =0.1%, P=0.775). INTERPRETATION: Post-ictal psychosis occurs under particular circumstances in people with epilepsy with a heightened genetic predisposition to schizophrenia, illustrating how disease biology (seizures) and trait susceptibility (schizophrenia) may interact to produce particular outcomes (post-ictal psychosis) in a common disease

    Clinical challenges and future therapeutic approaches for neuronal ceroid lipofuscinosis

    Get PDF
    © 2019 Elsevier Ltd Treatment of the neuronal ceroid lipofuscinoses, also known as Batten disease, is at the start of a new era because of diagnostic and therapeutic advances relevant to this group of inherited neurodegenerative and life-limiting disorders that affect children. Diagnosis has improved with the use of comprehensive DNA-based tests that simultaneously screen for many genes. The identification of disease-causing mutations in 13 genes provides a basis for understanding the molecular mechanisms underlying neuronal ceroid lipofuscinoses, and for the development of targeted therapies. These targeted therapies include enzyme replacement therapies, gene therapies targeting the brain and the eye, cell therapies, and pharmacological drugs that could modulate defective molecular pathways. Such therapeutic developments have the potential to enable earlier diagnosis and better targeted therapeutic management. The first approved treatment is an intracerebroventricularly administered enzyme for neuronal ceroid lipofuscinosis type 2 disease that delays symptom progression. Efforts are underway to make similar progress for other forms of the disorder
    corecore