107 research outputs found

    Radar sounding using the Cassini altimeter waveform modeling and Monte Carlo approach for data inversion observations of Titan's seas

    Get PDF
    Recently, the Cassini RADAR has been used as a sounder to probe the depth and constrain the composition of hydrocarbon seas on Saturn's largest moon, Titan. Altimetry waveforms from observations over the seas are generally composed of two main reflections: the first from the surface of the liquid and the second from the seafloor. The time interval between these two peaks is a measure of sea depth, and the attenuation from the propagation through the liquid is a measure of the dielectric properties, which is a sensitive property of liquid composition. Radar measurements are affected by uncertainties that can include saturation effects, possible receiver distortion, and processing artifacts, in addition to thermal noise and speckle. To rigorously treat these problems, we simulate the Ku-band altimetry echo received from Titan's seas using a two-layer model, where the surface is represented by a specular reflection and the seafloor is modeled using a facet-based synthetic surface. The simulation accounts for the thermal noise, speckle, analog-to-digital conversion, and block adaptive quantization and allows for possible receiver saturation. We use a Monte Carlo method to compare simulated and observed waveforms and retrieve the probability distributions of depth, surface/subsurface intensity ratio, and subsurface roughness for the individual double-peaked waveform of Ligeia Mare acquired by the Cassini spacecraft in May 2013. This new analysis provides an update to the Ku-band attenuation and results in a new estimate for its loss tangent and composition. We also demonstrate the ability to retrieve bathymetric information from saturated altimetry echoes acquired over Ontario Lacus in December 2008

    Dielectric properties of lava flows west of Ascraeus Mons, Mars

    Get PDF
    The SHARAD instrument on the Mars Reconnaissance Orbiter detects subsurface interfaces beneath lava flow fields northwest of Ascraeus Mons. The interfaces occur in two locations; a northern flow that originates south of Alba Patera, and a southern flow that originates at the rift zone between Ascraeus and Pavonis Montes. The northern flow has permittivity values, estimated from the time delay of echoes from the basal interface, between 6.2 and 17.3, with an average of 12.2. The southern flow has permittivity values of 7.0 to 14.0, with an average of 9.8. The average permittivity values for the northern and southern flows imply densities of 3.7 and 3.4 g cm3, respectively. Loss tangent values for both flows range from 0.01 to 0.03. The measured bulk permittivity and loss tangent values are consistent with those of terrestrial and lunar basalts, and represent the first measurement of these properties for dense rock on Mars

    Effects of the passage of Comet C/2013 A1 (Siding Spring) observed by the Shallow Radar (SHARAD) on Mars reconnaissance orbiter

    Get PDF
    The close passage of Comet C/2013 A1 (Siding Spring) to Mars provided a unique opportunity to observe the interaction of cometary materials with the Martian ionosphere and atmosphere using the sounding radar SHARAD (SHAllow RADar) aboard Mars Reconnaissance Orbiter. In two nightside observations, acquired in the 10 h following the closest approach, the SHARAD data reveal a significant increase of the total electron content (TEC). The observed TEC values are typical for daylight hours just after dawn or before sunset but are unprecedented this deep into the night. Results support two predictions indicating that cometary pickup O+ ions, or ions generated from the ablation of cometary dust, are responsible for the creation of an additional ion layer

    Liquid filled canyons on Titan

    Get PDF
    In May 2013 the Cassini RADAR altimeter observed channels in Vid Flumina, a drainage network connected to Titan’s second largest hydrocarbon sea, Ligeia Mare. Analysis of these altimeter echoes shows that the channels are located in deep (up to ~570 m), steep-sided, canyons and have strong specular surface reflections that indicate they are currently liquid filled. Elevations of the liquid in these channels are at the same level as Ligeia Mare to within a vertical precision of about 0.7 m, consistent with the interpretation of drowned river valleys. Specular reflections are also observed in lower order tributaries elevated above the level of Ligeia Mare, consistent with drainage feeding into the main channel system

    SHARAD radar sounding of the Vastitas Borealis Formation in Amazonis Planitia

    Get PDF
    Amazonis Planitia has undergone alternating episodes of sedimentary and volcanic infilling, forming an interleaved sequence with an upper surface that is very smooth at the kilometer scale. Earlier work interprets the near-surface materials as either young, rough lava flows or ice-rich sediment layers, overlying a basement comprising the Vastitas Borealis Formation and earlier Hesperian plains. Sounding radar profiles across Amazonis Planitia from the Shallow Radar (SHARAD) instrument on the Mars Reconnaissance Orbiter reveal a subsurface dielectric interface that increases in depth toward the north along most orbital tracks. The maximum depth of detection is 100–170 m, depending upon the real dielectric permittivity of the materials, but the interface may persist at greater depth to the north if the reflected energy is attenuated below the SHARAD noise floor. The dielectric horizon likely marks the boundary between sedimentary material of the Vastitas Borealis Formation and underlying Hesperian volcanic plains. The SHARAD-detected interface follows the surface topography across at least one of the large wrinkle ridges in north central Amazonis Planitia. This conformality suggests that Vastitas Borealis sediments, at least in this region, were emplaced prior to compressional tectonic deformation. The change in radar echo strength with time delay is consistent with a loss tangent of 0.005–0.012 for the column of material between the surface and the reflector. These values are consistent with dry, moderate-density sediments or the lower end of the range of values measured for basalts. While a component of distributed ice in a higher-loss matrix cannot be ruled out, we do not find evidence for a dielectric horizon within the Vastitas Borealis Formation that might suggest an abrupt change from an upper dry layer to an ice-rich lower deposit

    Synergy of Cassini SAR and altimeter acquisitions for the retrieval of dune field characteristics on Titan

    Get PDF
    This work focuses on the retrieval of Titan’s dune field characteristics addressing different radar modes. The main purpose of the proposed work is to exploit a possible synergy between SAR and altimeter acquisitions modes to provide information about dune field. Cassini has performed 86 Titan flybys in which several observations of dune fields have been collected in altimetry mode. There are several cases in which SAR and altimeter have been acquired over same areas covered by dune fields, such as during T28 (SAR) and T30 (altimeter) flybys. Altimetry together with SAR data have been used to derive the rms slopes of dunes (large scale) over Fensal area, this information has been employed to calculate SAR incidence angle with respect to dunes. We extracted backscattering coefficients of bright and dark areas detected in the analyzed SAR image in order to evaluate the angular response of scattering. Through the Geometric Optics model we retrieve roughness values (small scale rms slope) for both dune bright and dark areas

    Regional stratigraphy of the south polar layered deposits (Promethei Lingula, Mars): “Discontinuity-bounded” units in images and radargrams

    Get PDF
    The Mars South Polar Layered Deposits (SPLD) are the result of depositional and erosional events, which are marked by different stratigraphic sequences and erosional surfaces. To unambiguously define the stratigraphic units at regional scale, we mapped the SPLD on the basis of observed discontinuities (i.e., unconformities, correlative discontinuities and conformities), as commonly done in terrestrial modern stratigraphy. This methodology is defined as “Discontinuity-Bounded Units” or allostratigraphy, and is complemented by geomorphological mapping. Our study focuses on Promethei Lingula (PL) and uses both high-resolution images (CTX, HiRISE) and radargrams (SHARAD) to combine surface and sub-surface observations and obtain a 3D geological reconstruction of the SPLD. One regional discontinuity (named AUR1) was defined within the studied stratigraphic succession and is exposed in several non-contiguous outcrops around PL as well as observed at depth within the ice sheet. This is the primary contact between two major depositional sequences, showing a different texture at CTX resolution. The lower sequence is characterized mainly by a “ridge and trough” morphology (Ridge and Trough Sequence; RTS) and the upper sequence shows mainly by a “stair-stepped” morphology (Stair-Stepped Sequence; SSS). On the basis of the observations, we defined two regional “discontinuity-bounded” units in PL, respectively coinciding with RTS and SSS sequences. Our stratigraphic reconstruction provides new hints on the major scale events that shaped this region. Oscillations in Martian axial obliquity could have controlled local climate conditions in the past, affecting the PL geological record

    Science results from sixteen years of MRO SHARAD operations

    Get PDF
    In operation for >16 years to date, the Mars Reconnaissance Orbiter (MRO) Shallow Radar (SHARAD) sounder has acquired data at its nominal 300–450 m along-track and 3-km cross-track resolution covering >55% of the Martian surface, with nearly 100% overlap in coverage at that scale in the polar regions and in a number of smaller mid-latitude areas. While SHARAD data have opened a new window into understanding the interior structures and properties of Martian ices, volcanics, and sedimentary deposits up to a few kilometers in depth, they have also led to new revelations about the deeper interior and the behavior of the planet’s ionosphere. Here we summarize the data collected by SHARAD over this time period, the methods used in the analysis of that data, and the resulting scientific findings. The polar data are especially rich, revealing complex structures that comprise up to several dozen reflecting interfaces that extend to depths of 3 km, which inform the evolution of Martian climate in the late Amazonian period. SHARAD observations of mid-latitude lobate debris aprons and other glacier-like landforms detect strong basal reflections and low dielectric loss, confirming that they are icerich debris-covered glaciers. In other mid-latitude terrains, SHARAD data demonstrate the presence of widespread ground ices, likely at lower concentrations. SHARAD signals also probe non-icy materials, mapping out stacked lava flows, probing low-density materials thought to be ash-fall deposits, and occasionally penetrating sedimentary deposits, all of which reveal the structures and interior properties diagnostic of emplacement processes. SHARAD signals are impacted by their passage through the Martian ionosphere, revealing variations in time and space of the total electron content linked with the remanent magnetic field. Advanced techniques developed over the course of the mission, which include subband and super-resolution processing, coherent and incoherent summing, and three-dimensional (3D) radar imaging, are enabling new discoveries and extending the utility of the data. For 3D imaging, a cross-track spacing at the nominal 3-km resolution is more than sufficient to achieve good results, but finer spacing of 0.5 km or less significantly improves the spatially interpolated radar images. Recent electromagnetic modeling and a flight test show that SHARAD’s signal-to-noise ratio can be greatly improved with a large (~120◩) roll of the spacecraft to reduce interference with the spacecraft body. Both MRO and SHARAD are in remarkably fine working order, and the teams look forward to many more years in which to pursue improvements in coverage density, temporal variability in the ionosphere, and data quality that promise exciting new discoveries at Mars

    Shallow radar (SHARAD) sounding observations of the Medusae Fossae Formation, Mars

    Get PDF
    The SHARAD (shallow radar) sounding radar on the Mars Reconnaissance Orbiter detects subsurface reflections in the eastern and western parts of the Medusae Fossae Formation (MFF). The radar waves penetrate up to 580 m of the MFF and detect clear subsurface interfaces in two locations: west MFF between 150 and 155◩ E and east MFF between 209 and 213◩ E. Analysis of SHARAD radargrams suggests that the real part of the permittivity is ∌3.0, which falls within the range of permittivity values inferred from MARSIS data for thicker parts of the MFF. The SHARAD data cannot uniquely determine the composition of the MFF material, but the low permittivity implies that the upper few hundred meters of the MFF material has a high porosity. One possibility is that the MFF is comprised of low-density welded or interlocked pyroclastic deposits that are capable of sustaining the steep-sided yardangs and ridges seen in imagery. The SHARAD surface echo power across the MFF is low relative to typical martian plains, and completely disappears in parts of the east MFF that correspond to the radar-dark Stealth region. These areas are extremely rough at centimeter to meter scales, and the lack of echo power is most likely due to a combination of surface roughness and a low near-surface permittivity that reduces the echo strength from any locally flat regions. There is also no radar evidence for internal layering in any of the SHARAD data for the MFF, despite the fact that tens-of-meters scale layering is apparent in infrared and visible wavelength images of nearby areas. These interfaces may not be detected in SHARAD data if their permittivity contrasts are low, or if the layers are discontinuous. The lack of closely spaced internal radar reflectors suggests that the MFF is not an equatorial analog to the current martian polar deposits, which show clear evidence of multiple internal layers in SHARAD dat

    Subsurface structure of Planum Boreum from Mars Reconnaissance Orbiter Shallow Radar soundings

    Get PDF
    We map the subsurface structure of Planum Boreum using sounding data from the Shallow Radar (SHARAD) instrument onboard the Mars Reconnaissance Orbiter. Radar coverage throughout the 1,000,000- km2 area reveals widespread reflections from basal and internal interfaces of the north polar layered deposits (NPLD). A dome-shaped zone of diffuse reflectivity up to 12 ls (1-km thick) underlies twothirds of the NPLD, predominantly in the main lobe but also extending into the Gemina Lingula lobe across Chasma Boreale. We equate this zone with a basal unit identified in image data as Amazonian sand-rich layered deposits [Byrne, S., Murray, B.C., 2002. J. Geophys. Res. 107, 5044, 12 pp. doi:10.1029/2001JE001615; Fishbaugh, K.E., Head, J.W., 2005. Icarus 174, 444–474; Tanaka, K.L., Rodriguez, J.A.P., Skinner, J.A., Bourke, M.C., Fortezzo, C.M., Herkenhoff, K.E., Kolb, E.J., Okubo, C.H., 2008. Icarus 196, 318–358]. Elsewhere, the NPLD base is remarkably flat-lying and co-planar with the exposed surface of the surrounding Vastitas Borealis materials. Within the NPLD, we delineate and map four units based on the radar-layer packets of Phillips et al. [Phillips, R.J., and 26 colleagues, 2008. Science 320, 1182– 1185] that extend throughout the deposits and a fifth unit confined to eastern Gemina Lingula. We estimate the volume of each internal unit and of the entire NPLD stack (821,000 km3), exclusive of the basal unit. Correlation of these units to models of insolation cycles and polar deposition [Laskar, J., Levrard, B., Mustard, J.F., 2002. Nature 419, 375–377; Levrard, B., Forget, F., Montmessin, F., Laskar, J., 2007. J. Geophys. Res. 112, E06012, 18 pp. doi:10.1029/2006JE002772] is consistent with the 4.2-Ma age of the oldest preserved NPLD obtained by Levrard et al. [Levrard, B., Forget, F., Montmessin, F., Laskar, J., 2007. J. Geophys. Res. 112, E06012, 18 pp. doi:10.1029/2006JE002772]. We suggest a dominant layering mechanism of dust–content variation during accumulation rather than one of lag production during periods of sublimation
    • 

    corecore