4 research outputs found

    Definition, aims, and implementation of GA2LEN/HAEi Angioedema Centers of Reference and Excellence

    Get PDF

    Small-angle X-ray Scattering And Structural Modeling Of Full-length: Cellobiohydrolase I From Trichoderma Harzianum

    No full text
    Cellobiohydrolases hydrolyze cellulose releasing cellobiose units. They are very important for a number of biotechnological applications, such as, for example, production of cellulosic ethanol and cotton fiber processing. The Trichoderma cellobiohydrolase I (CBH1 or Cel7A) is an industrially important exocellulase. It exhibits a typical two domain architecture, with a small C-terminal cellulose-binding domain and a large N-terminal catalytic core domain, connected by an O-glycosylated linker peptide. The mechanism by which the linker mediates the concerted action of the two domains remains a conundrum. Here, we probe the protein shape and domain organization of the CBH1 of Trichoderma harzianum (ThCel7A) by small angle X-ray scattering (SAXS) and structural modeling. Our SAXS data shows that ThCel7A linker is partially-extended in solution. Structural modeling suggests that this linker conformation is stabilized by inter- and intra-molecular interactions involving the linker peptide and its O-glycosylations. © 2013 Springer Science+Business Media Dordrecht.20415731585Abuja, P., Pilz, I., Claeyssens, M., Tomme, P., Domain-structure of cellobiohydrolase-II as studied by small-angle X-ray-scattering-close resemblance to cellobiohydrolase-I (1988) Biochem Biophys Res Commun, 156 (1), pp. 180-185. , doi:10.1016/S0006-291X(88)80821-0Arnold, K., Bordoli, L., Kopp, J., Schwede, T., The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling (2006) Bioinformatics, 22 (2), pp. 195-201. , doi:10.1093/bioinformatics/bti770Beckham, G.T., Bomble, Y.J., Matthews, J.F., Taylor, C.B., Resch, M.G., Yarbrough, J.M., Decker, S.R., Crowley, M.F., The O-glycosylated linker from the Trichoderma reesei family 7 cellulase is a flexible (2010) Disordered Protein Biophys J, 99 (11), pp. 3773-3781. , doi:10.1016/j.bpj.2010.10.032Bradford, M., Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding (1976) Anal Biochem, 72 (1-2), pp. 248-254. , doi:10.1006/abio.1976.9999Cantarel, B.L., Coutinho, P.M., Rancurel, C., Bernard, T., Lombard, V., Henrissat, B., The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics (2009) Nucleic Acids Res, 37, pp. D233-D238. , doi:10.1093/nar/gkn663Case, D.A., Darden, T.A., Chealtham, T.E., Simmerling, C.L., Wang, J., Duke, R.E., Luo, R., Merz, K.M., (2010), Amber 11, Single edn, Berkeley: Universtity of California PressCornell, W., Cieplak, P., Bayly, C., Gould, I., Merz, K., Ferguson, D., Spellmeyer, D., Kollman, P., A second generation force field for the simulation of proteins, nucleic acids, and organic molecules (vol 117, pg 5179, 1995) (1996) J Am Chem Soc, 118 (9), p. 2309. , doi:10.1021/ja955032eDivine, M., Stahlberg, J., Reinikanen, T., Ruohonen, L., Petterson, G., Knowles, J.K., Teeri, T.T., Jones, T.A., The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei (1994) Science, 265 (5171), pp. 524-528Fischer, H., de Oliveira Neto, M., Napolitano, H.B., Polikarpov, I., Craievich, A.F., Determination of the molecular weight of proteins in solution from a single small-angle X-ray scattering measurement on a relative scale (2010) J Appl Crystallogr, 43 (PART 1), pp. 101-109. , doi:10.1107/S0021889809043076Guinier, A., Fornet, G., (1995) Small Angle Scattering of X-Rays, , 1st edn., London: WileyHammersley, A., Svensson, S., Hanfland, M., Fitch, A., Hausermann, D., Two-dimensional detector software: from real detector to idealised image or two-theta scan (1996) High Pressure Res, 14 (4-6), pp. 235-248. , doi:10.1080/08957959608201408Hammersley, A., Brown, K., Burmeister, W., Claustre, L., Gonzalez, A., McSweeney, S., Mitchell, E., Thompson, A., Calibration and application of an X-ray image intensifier/charge-coupled device detector for monochromatic macromolecular crystallography (1997) J Synchrot Radiat, 4 (PART 2), pp. 67-77. , doi:10.1107/S0909049596015087Harrison, M., Wathugala, I., Tenkanen, M., Packer, N., Nevalainen, K., Glycosylation of acetylxylan esterase from Trichoderma reesei (2002) Glycobiology, 12 (4), pp. 291-298. , doi:10.1093/glycob/12.4.291Hayn, M., Esterbauer, H., Separation and partial characterization of Trichoderma-reesei cellulase by fast chromatofocusing (1985) J Chromat, 329 (3), pp. 379-387. , doi:10.1016/S0021-9673(01)81944-0Horn, S.J., Vaaje-Kolstad, G., Westereng, B., Eijsink, V.G.H., Novel enzymes for the degradation of cellulose (2012) Biotechnol Biofuels, 5, p. 45. , doi:10.1186/1754-6834-5-45Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., Simmerling, C., Comparison of multiple amber force fields and development of improved protein backbone parameters (2006) Proteins, 65 (3), pp. 712-725. , doi:10.1002/prot.21123Humphrey, W., Dalke, A., Schulten, K., VMD: visual molecular dynamics (1996) J Mol Graph, 14 (1), pp. 33-38. , doi:10.1016/0263-7855(96)00018-5Igarashi, K., Koivula, A., Wada, M., Kimura, S., Penttila, M., Samejima, M., High speed atomic force microscopy visualizes processive movement of Trichoderma reesei cellobiohydrolase i on crystalline cellulose (2009) J Biol Chem, 284 (52), pp. 36186-36190. , doi:10.1074/jbc.M109.034611Jorgensen, W., Chandrasekhar, J., Madura, J., Impey, R., Klein, M., Comparison of simple potential functions for simulating liquid water (1983) J Chem Phys, 79 (2), pp. 926-935. , doi:10.1063/1.445869Kalra, M., Sandhu, D., Cellulase production and its localization in Trichoderma-harzianum (1986) Folia Microbiol, 31 (4), pp. 303-308. , doi:10.1007/BF02926955Kirschner, K.N., Yongye, A.B., Tschampel, S.M., Gonzalez-Outeirino, J., Daniels, C.R., Foley, B.L., Woods, R.J., GLYCAM06: a generalizable biomolecular force field, carbohydrates (2008) J Comput Chem, 29 (4), pp. 622-655. , doi:10.1002/jcc.20820Kozin, M.B., Svergun, D.I., Automated matching of highandlow-resolution structural models (2001) J Appl Crystallogr, 34, pp. 33-41Kraulis, P., Clore, G., Nilges, M., Jones, T., Pettersson, G., Knowles, J., Gronenborn, A., Determination of the 3-dimensional solution structure of the c-terminal domain of Cellobiohydrolase-I from Trichoderma-reesei - a study using nuclear magnetic-resonance and hybrid distance geometry dynamical simulated annealing (1989) Biochemistry, 28 (18), pp. 7241-7257. , doi:10.1021/bi00444a016Laemmli, U., Cleavage of structural proteins during assembly of head of bacteriophage-T4 (1970) Nature, 227 (5259), p. 680. , doi:10.1038/227680a0Lee, H., Brown, R., A comparative structural characterization of two cellobiohydrolases from Trichoderma reesei: a high resolution electron microscopy study (1997) J Biotechnol, 57 (1-3), pp. 127-136. , doi:10.1016/S0168-1656(97)00111-9Li, X., Hj, Y., Roy, B., Wang, D., Wf, Y., Lj, J., Park, E.Y., Yg, M., The most stirring technology in future: cellulase enzyme and biomass utilization (2009) Afr J Biotechnol, 8 (11), pp. 2418-2422Matthews, J., Skopec, C., Mason, P., Zuccato, P., Torget, R., Sugiyama, J., Himmel, M., Brady, J., Computer simulation studies of microcrystalline cellulose I beta (2006) Carbohydr Res, 341 (1), pp. 138-152. , doi:10.1016/j.carres.2005.09.028Mattinen, M., Kontteli, M., Kerovuo, J., Linder, M., Annila, A., Lindeberg, G., Reinikainen, T., Drakenberg, T., Three-dimensional structures of three engineered cellulose-binding domains of cellobiohydrolase I from Trichoderma reesei (1997) Protein Sci, 6 (2), pp. 294-303Momeni, M.H., Payne, C.M., Hansson, H., Mikkelsen, N.E., Svedberg, J., Engstrom, A., Sandgren, M., Stahlberg, J., Structural, biochemical, and computational characterization of the glycoside hydrolase family 7 cellobiohydrolase of the tree-killing fungus Heterobasidion irregulare (2013) J Biol Chem, 22 (8), pp. 5861-5872. , doi: 10. 1074/jbc. M112. 440891Nummi, M., Nikupaavola, M., Lappalainen, A., Enari, T., Raunio, V., Cellobiohydrolase from Trichoderma-reesei (1983) Biochem J, 215 (3), pp. 677-683Petoukhov, M., Svergun, D., Global rigid body modeling of macromolecular complexes against small-angle scattering data (2005) Biophys J, 89 (PART 2), pp. 1237-1250. , doi:10.1529/biophysj.105.064154Phillips, J., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Schulten, K., Scalable molecular dynamics with NAMD (2005) J Comput Chem, 26 (16), pp. 1781-1802. , doi:10.1002/jcc.20289Pilz, I., Schwarz, E., Kilburn, D., Miller, R., Warren, R., Gilkes, N., The tertiary structure of a bacterial cellulase determined by small-angle X-ray-scattering analysis (1990) Biochem J, 271 (1), pp. 277-280Pingali, S.V., O'Neill, H.M., McGaughey, J., Urban, V.S., Rempe, C.S., Petridis, L., Smith, J.C., Heller, W.T., Small angle neutron scattering reveals pH-dependent conformational changes in Trichoderma reesei cellobiohydrolase I implications for enzymatic activity (2011) J Biol Chem, 286 (37), pp. 32801-32809. , doi:10.1074/jbc.M111.263004Receveur, V., Czjzek, M., Schulein, M., Panine, P., Henrissat, B., Dimension, shape, and conformational flexibility of a two domain fungal cellulase in solution probed by small angle X-ray scattering (2002) J Biol Chem, 277 (43), pp. 40887-40892. , doi:10.1074/jbc.M205404200Roussos, S., Raimbault, M., Cellulose hydrolysis by fungi. 1. Screening of cellulolytic strains (1982) Ann Microb, B133 (3), pp. 455-464Roy, A., Kucukural, A., Zhang, Y., I-TASSER: a unified platform for automated protein structure and function prediction (2010) Nat Protoc, 5 (4), pp. 725-738. , doi:10.1038/nprot.2010.5Schmuck, M., Pilz, I., Hayn, M., Esterbauer, H., Investigation of cellobiohydrolase from Trichoderma-reesei by small-angle X-ray-scattering (1986) Biotechnol Lett, 8 (6), pp. 397-402. , doi:10.1007/BF01026739Seeber, M., Cecchini, M., Rao, F., Settanni, G., Caflisch, A., Wordom: a program for efficient analysis of molecular dynamics simulations (2007) Bioinformatics, 23 (19), pp. 2625-2627. , doi:10.1093/bioinformatics/btm378Serpa, V.I., Polikarpov, I., Enzymes in bioenergy (2011) Routes to Cellulosic Ethanol-Part II, , 10.1007/978-0-387-92740-4_7, M. S. Buckeridge and G. H. H. Goldman (Eds.), New York: SpringerSrisodsuk, M., Reinikainen, T., Penttila, M., Teeri, T., Role of the interdomain linker peptide of Trichoderma-reesei cellobiohydrolase-I in its interaction with crystalline cellulose (1993) J Biol Chem, 268 (28), pp. 20756-20761Stahlberg, J., Johansson, G., Pettersson, G., A new model for enzymatic-hydrolysis of cellulose based on the 2-domain structure of cellobiohydrolase-I (1991) Bio-Technology, 9 (3), pp. 286-290. , doi:10.1038/nbt0391-286Stals, I., Sandra, K., Geysens, S., Contreras, R., van Beeumen, J., Claeyssens, M., Factors influencing glycosylation of Trichoderma reesei cellulases. I: postsecretorial changes of the O- and N-glycosylation pattern of Cel7A (2004) Glycobiology, 14 (8), pp. 713-724. , doi:10.1093/glycob/cwh080Svergun, D., Mathematical-methods in small-angle scattering data-analysis (1991) J Appl Crystallogr, 24 (PART 5), pp. 485-492. , doi:10.1107/S0021889891001280Svergun, D., Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing (1999) Biophys J, 76 (6), pp. 2879-2886. , doi:10.1016/S0006-495(99)77443-6Svergun, D., Barberato, C., Koch, M., CRYSOL-a program to evaluate x-ray solution scattering of biological macromolecules from atomic coordinates (1995) J Appl Crystallogr, 28 (PART 6), pp. 768-773. , doi:10.1107/S0021889895007047Svergun, D., Petoukhov, M., Koch, M., Determination of domain structure of proteins from X-ray solution scattering (2001) Biophys J, 80 (6), pp. 2946-2953Textor, L.C., Colussi, F., Silveira, R.L., Serpa, V., Mello, B.L., Muniz, J.R.C., Squina, F.M., Polikarpov, I., (2012) FEBS J, 280 (1), pp. 56-69. , doi:10.1111/febs.12049Ting, C.L., Makarov, D.E., Wang, Z.G., A kinetic model for the enzymatic action of cellulase (2009) J Phys Chem B, 113 (14), pp. 4970-4977. , doi:10.1021/jp810625kVangunsteren, W., Berendsen, H., Algorithms for macromolecular dynamics and constraint dynamics (1977) Mol Phys, 34 (5), pp. 1311-1327. , doi:10.1080/00268977700102571Vantilbeurgh, H., Tomme, P., Claeyssens, M., Bhikhabhai, R., Pettersson, G., Limited proteolysis of the cellobiohydrolase I from Trichoderma-reesei-separation of functional domains (1986) FEBS Lett, 204 (2), pp. 223-227. , doi:10.1016/0014-5793(86)80816-XViolot, S., Aghajari, N., Czjzek, M., Feller, G., Sonan, G., Gouet, P., Gerday, C., Receveur-Brechot, V., Structure of a full length psychrophilic cellulase from Pseudoalteromonas haloplanktis revealed by X-ray diffraction and small angle X-ray scattering (2005) J Mol Biol, 348 (5), pp. 1211-1224. , doi:10.1016/j.jmb.2005.03.026Zhang, Y., Template-based modeling and free modeling by I-TASSER in CASP7 (2007) Proteins, 69 (8), pp. 108-117. , doi:10.1002/prot.21702Zhong, L., Xie, J., Investigation of the effect of glycosylation on human prion protein by molecular dynamics (2009) J Biomol Struct Dyn, 26 (5), pp. 525-533Zhong, L., Matthews, J.F., Crowley, M.F., Rignall, T., Talon, C., Cleary, J.M., Walker, R.C., Brady, J.W., Interactions of the complete cellobiohydrolase I from Trichodera reesei with microcrystalline cellulose I beta (2008) Cellulose, 15 (2), pp. 261-273. , doi:10.1007/s10570-007-9186-

    "Setentão" uma nova cultivar de feijão-de-corda para o estado do Ceará

    No full text
    Do cruzamento entre a cultivar "sempre verde" de semente de tegumento creme e a cultivar "TVu 59", de sementes de cor marrom, selecionou-se a cultivar "Setentão". O método utilizado foi o genealógico com teste de capacidade produtiva nas gerações F3 e F4, sendo as melhores linhas submetidas a seleção massal em blocos isolados e separados por fileiras de milho na geração F5, na geração F5 foi realizada seleção individual dentro de cada linha, iniciando-se na geração F7 os ensaios de produção com 14 linhas. A seleção 010.061 (05) (01) (03) além da excelente qualidade da semente, apresenta boa capacidade produtiva, resistência ao CpSMV e CMV, respectivamente. Esta seleção agora cognominada de "Setentão" apresenta hábito de crescimento indeterminado, porte semi-ramador e boa produtividade.<br>A cultivar of cowpea, Vigna unguiculata, named "Setentão" was obtained from a cross between "Sempre Verde" with seeds with cream integument and "TVu 59" with seeds with brown integument. The genealogical method with productive capacity test was used in the selection for F3 and F4 generations, with the best lines submitted to a bulk selection in isolated blocks (with lines separated by maige) in the F5 generation. Individual selection was carried out within each line and the assay productions with 14 lines were initiated at the F7. The selected line 010.061 (05) (01) (03) presented excellent seed quality together with good productive capacity and resistance to cowpea severe mosaic virus and cucumber mosaic virus isolated in Ceará from cowpea. The selected line named "Setentão" has indeterminate growth with semi-climbing habit and good productivity
    corecore