55 research outputs found

    There are No Nice Interfaces in 2+1 Dimensional SOS-Models in Random Media

    Get PDF
    We prove that in dimension d2d\leq 2 translation covariant Gibbs states describing rigid interfaces in a disordered solid-on-solid (SOS) cannot exist for any value of the temperature, in contrast to the situation in d3d\geq 3. The prove relies on an adaptation of a theorem of Aizenman and Wehr. Keywords: Disordered systems, interfaces, SOS-modelComment: 8 pages, gz-compressed Postscrip

    Dynamics of a tagged particle in the asymmetric exclusion process with the step initial condition

    Full text link
    The one-dimensional totally asymmetric simple exclusion process (TASEP) is considered. We study the time evolution property of a tagged particle in TASEP with the step-type initial condition. Calculated is the multi-time joint distribution function of its position. Using the relation of the dynamics of TASEP to the Schur process, we show that the function is represented as the Fredholm determinant. We also study the scaling limit. The universality of the largest eigenvalue in the random matrix theory is realized in the limit. When the hopping rates of all particles are the same, it is found that the joint distribution function converges to that of the Airy process after the time at which the particle begins to move. On the other hand, when there are several particles with small hopping rate in front of a tagged particle, the limiting process changes at a certain time from the Airy process to the process of the largest eigenvalue in the Hermitian multi-matrix model with external sources.Comment: 48 pages, 8 figure

    Anisotropic KPZ growth in 2+1 dimensions: fluctuations and covariance structure

    Get PDF
    In [arXiv:0804.3035] we studied an interacting particle system which can be also interpreted as a stochastic growth model. This model belongs to the anisotropic KPZ class in 2+1 dimensions. In this paper we present the results that are relevant from the perspective of stochastic growth models, in particular: (a) the surface fluctuations are asymptotically Gaussian on a sqrt(ln(t)) scale and (b) the correlation structure of the surface is asymptotically given by the massless field.Comment: 13 pages, 4 figure

    Generalized Green Functions and current correlations in the TASEP

    Full text link
    We study correlation functions of the totally asymmetric simple exclusion process (TASEP) in discrete time with backward sequential update. We prove a determinantal formula for the generalized Green function which describes transitions between positions of particles at different individual time moments. In particular, the generalized Green function defines a probability measure at staircase lines on the space-time plane. The marginals of this measure are the TASEP correlation functions in the space-time region not covered by the standard Green function approach. As an example, we calculate the current correlation function that is the joint probability distribution of times taken by selected particles to travel given distance. An asymptotic analysis shows that current fluctuations converge to the Airy2{Airy}_2 process.Comment: 46 pages, 3 figure

    Vicious Walkers and Hook Young Tableaux

    Full text link
    We consider a generalization of the vicious walker model. Using a bijection map between the path configuration of the non-intersecting random walkers and the hook Young diagram, we compute the probability concerning the number of walker's movements. Applying the saddle point method, we reveal that the scaling limit gives the Tracy--Widom distribution, which is same with the limit distribution of the largest eigenvalues of the Gaussian unitary ensemble.Comment: 23 pages, 5 figure

    Random walk generated by random permutations of {1,2,3, ..., n+1}

    Full text link
    We study properties of a non-Markovian random walk Xl(n)X^{(n)}_l, l=0,1,2,>...,nl =0,1,2, >...,n, evolving in discrete time ll on a one-dimensional lattice of integers, whose moves to the right or to the left are prescribed by the \text{rise-and-descent} sequences characterizing random permutations π\pi of [n+1]={1,2,3,...,n+1}[n+1] = \{1,2,3, ...,n+1\}. We determine exactly the probability of finding the end-point Xn=Xn(n)X_n = X^{(n)}_n of the trajectory of such a permutation-generated random walk (PGRW) at site XX, and show that in the limit nn \to \infty it converges to a normal distribution with a smaller, compared to the conventional P\'olya random walk, diffusion coefficient. We formulate, as well, an auxiliary stochastic process whose distribution is identic to the distribution of the intermediate points Xl(n)X^{(n)}_l, l<nl < n, which enables us to obtain the probability measure of different excursions and to define the asymptotic distribution of the number of "turns" of the PGRW trajectories.Comment: text shortened, new results added, appearing in J. Phys.

    A pedestrian's view on interacting particle systems, KPZ universality, and random matrices

    Full text link
    These notes are based on lectures delivered by the authors at a Langeoog seminar of SFB/TR12 "Symmetries and universality in mesoscopic systems" to a mixed audience of mathematicians and theoretical physicists. After a brief outline of the basic physical concepts of equilibrium and nonequilibrium states, the one-dimensional simple exclusion process is introduced as a paradigmatic nonequilibrium interacting particle system. The stationary measure on the ring is derived and the idea of the hydrodynamic limit is sketched. We then introduce the phenomenological Kardar-Parisi-Zhang (KPZ) equation and explain the associated universality conjecture for surface fluctuations in growth models. This is followed by a detailed exposition of a seminal paper of Johansson that relates the current fluctuations of the totally asymmetric simple exclusion process (TASEP) to the Tracy-Widom distribution of random matrix theory. The implications of this result are discussed within the framework of the KPZ conjecture.Comment: 52 pages, 4 figures; to appear in J. Phys. A: Math. Theo

    Variational formulas and cocycle solutions for directed polymer and percolation models

    Get PDF
    We discuss variational formulas for the law of large numbers limits of certain models of motion in a random medium: namely, the limiting time constant for last-passage percolation and the limiting free energy for directed polymers. The results are valid for models in arbitrary dimension, steps of the admissible paths can be general, the environment process is ergodic under spatial translations, and the potential accumulated along a path can depend on the environment and the next step of the path. The variational formulas come in two types: one minimizes over gradient-like cocycles, and another one maximizes over invariant measures on the space of environments and paths. Minimizing cocycles can be obtained from Busemann functions when these can be proved to exist. The results are illustrated through 1+1 dimensional exactly solvable examples, periodic examples, and polymers in weak disorder

    The metastate approach to thermodynamic chaos

    Full text link
    In realistic disordered systems, such as the Edwards-Anderson (EA) spin glass, no order parameter, such as the Parisi overlap distribution, can be both translation-invariant and non-self-averaging. The standard mean-field picture of the EA spin glass phase can therefore not be valid in any dimension and at any temperature. Further analysis shows that, in general, when systems have many competing (pure) thermodynamic states, a single state which is a mixture of many of them (as in the standard mean-field picture) contains insufficient information to reveal the full thermodynamic structure. We propose a different approach, in which an appropriate thermodynamic description of such a system is instead based on a metastate, which is an ensemble of (possibly mixed) thermodynamic states. This approach, modelled on chaotic dynamical systems, is needed when chaotic size dependence (of finite volume correlations) is present. Here replicas arise in a natural way, when a metastate is specified by its (meta)correlations. The metastate approach explains, connects, and unifies such concepts as replica symmetry breaking, chaotic size dependence and replica non-independence. Furthermore, it replaces the older idea of non-self-averaging as dependence on the bulk couplings with the concept of dependence on the state within the metastate at fixed coupling realization. We use these ideas to classify possible metastates for the EA model, and discuss two scenarios introduced by us earlier --- a nonstandard mean-field picture and a picture intermediate between that and the usual scaling/droplet picture.Comment: LaTeX file, 49 page
    corecore