research

Random walk generated by random permutations of {1,2,3, ..., n+1}

Abstract

We study properties of a non-Markovian random walk Xl(n)X^{(n)}_l, l=0,1,2,>...,nl =0,1,2, >...,n, evolving in discrete time ll on a one-dimensional lattice of integers, whose moves to the right or to the left are prescribed by the \text{rise-and-descent} sequences characterizing random permutations π\pi of [n+1]={1,2,3,...,n+1}[n+1] = \{1,2,3, ...,n+1\}. We determine exactly the probability of finding the end-point Xn=Xn(n)X_n = X^{(n)}_n of the trajectory of such a permutation-generated random walk (PGRW) at site XX, and show that in the limit nn \to \infty it converges to a normal distribution with a smaller, compared to the conventional P\'olya random walk, diffusion coefficient. We formulate, as well, an auxiliary stochastic process whose distribution is identic to the distribution of the intermediate points Xl(n)X^{(n)}_l, l<nl < n, which enables us to obtain the probability measure of different excursions and to define the asymptotic distribution of the number of "turns" of the PGRW trajectories.Comment: text shortened, new results added, appearing in J. Phys.

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 05/06/2019