8 research outputs found

    Forest Fragmentation Effects In Population Genetic Structure Of Esenbeckia Leiocarpa Engl. (guarantã) [efeitos Da Fragmentação Florestal Na Estrutura Genética De Populações De Esenbeckia Leiocarpa Engl. (guarantã)]

    No full text
    Studies of forest fragmentation effects upon the genetic structure of selected species are important for planning genetic conservation strategies. They can indicate the genetic behavior of species with similar ecological characteristics. Esenbeckia leiocarpa is a myophilic and autochoric Rutaceae tropical tree species occurring in an aggregated distribution in Tropical Moist Seazonal Brazilian Atlantic Forest, with several subpopulations constituting a forest fragment population. Leaf tissues of individuals from two subpopulation from a 2178 hectares forest fragment and two subpopulations from a 76 hectares forest fragment were analysed in alozymes horizontal electrophoresis in corn starch gel support. A1 the loci showing from 1 to 4 alleles. The loci Pgm-1, Idh-1 and Mdh-2 were monomorphic. Skdh-1, 6Pgdh-2, Mdh-1, Mdh-3, Mdh-4, Est-1, Prx-1 and Pgi2 loci were polymorphic. The average of observed heterozigosity (Ho) and expected heterozigosity (Ĥe) were not statistically signifficant. The f̂ and F̂ values, suggested that the populations are in Hardy-Weinberg equilibrium. The genetic diversity among populations (θ̂p) was 12.1% for adult individuals and 8.7% for the progenies showing diferences among populations. The allele frequencies of subpopulations from the larger fragment showed greater differences than those from the smaller fragment. Allele fixation levels were more homogenous in the smaller fragment subpopulation. The gene flow was the hight among subpopulations in Ibicatu fragment. Hierarquical analysis of genetic distribution within and among populations and subpopulations showed that the major part of genetic variability of species is maintained within subpopulations. These results suggest that this species had modified its natural genetic structure in small forest fragments, showing the necessity of maintaining natural areas for in situ genetic conservation of the species and confirming the necessity of maintainig large natural areas for conservation of tropical tree genetic diversity.57123139Alfenas, S.A., Peters, I.P., Brune, W., Passador, G.C., (1991) Eletroforese de proteínas e fungos em essências florestais, , Viçosa: UFV, 242pBallal, S.R., Foré, S.A., Guittmen, S.I., Apparent gene flow and genetics structure of Acer saccharum subpopulations in fores fragments (1994) Canadian journal of botany, 72, pp. 1311-1315Boshier, D.H., Chase, M.R., Bawa, K.S., Population genetics of Cordia alliodora (Boraginaceae), a neotropical tree: 2- mating system (1995) American journal of botany, 82 (4), pp. 476-483Coates, D.J., Genetic consequences os a bottleneck and spatial genetic structure in the triggerplant Stylidium coroniforme (Sylidiaceae) (1992) Heredity, 69, pp. 512-520Cockerham, C.C., Weir, B.S., Estimation of gene flow from F-statistics (1993) Evolution, 47 (3), pp. 855-863Crestana, C.S.M., Dias, I.S., Kageyama, P.Y., Biologia floral do Guarantã (Esenbeckia leiocarpa Engl.) (1982) Silvicultura, 8 (28), pp. 35-38Crow, J.F., Aoki, K., Group selection for a polygenic behavioral trait: Estimating the degree of population subdivision (1984) Proceedings of the National Academy of Science of the United States of America, 81, pp. 6073-6077Ellstrand, N.C., Ellan, D.R., Population genetic consequences of small population sizes: Implication for plant conservation (1993) Annual review on ecological systematics, 24, pp. 217-242Futuyma, D.J., (1992) Biologia evolutiva, , Ribeirão Preto: Sociedade Brasileira de Genética, 631pHall, P., Walker, S., Bawa, K., Effect of forest fragmentation on genetic diversity and mating system in tropical tree Pithecelobium elegans (1996) Conservation biology, 10 (3), pp. 757-768Hamrick, J.L., Godt, M.J.W., Allozyme diversity in plant species (1990) Plant population genetics, breeding and genetic resources, pp. 43-63. , Brown, A.H.D.Clegg, M.T.Kahler, A.L.Weir, B.S., ed. Sunderland: SinauerHamrick, J.L., Linhart, Y.B., Mitton, J.B., Relationships between life history characteristic and eletrophoretically detectable genetic variation in plants (1979) Annual review of ecology and systematics, 10, pp. 173-200Kageyama, P.Y., Conservação in situ de recursos genéticos de plantas (1987) IPEF, (35), pp. 7-37Kageyama, P.Y., Gandara, F.B., Dinâmica de populações de espécies arbóreas: Implicações para o manejo e a conservação (1993) Simpósio de Ecossistemas da Costa Brasileira, 3, pp. 23-31. , AnaisKephart, S.R., Starch gel eletrophoresis of plant isozymes: A comparative analysis of techniques (1990) American journal of botany, 77 (5), pp. 693-712Leitão-Filho, H.F., Considerações sobre florística de florestas tropicais e subtropicais do Brasil (1987) IPEF, (35), pp. 41-46Lewis, P.O., Zaykin, D., (1999) Genetic date analysis: Versão 1.0 para Windows 3.1., , Não publicadoMitton, J.B., Physiological and demographic variation associated with allozyme variation (1989) Isozymes in plant biology, pp. 127-145. , Soltis, D.Soltis, P.S. London: Chapman and HallMoraes, M.L.T., (1993) Variabilidade genética por isoenzimas e caracteres quantitativos em duas populações naturais de Aroeira Myracrodruon urundeuva F.F. & M.F. Allemão Anacardiaceae (Syn: Astronium urundeuva (Fr. Allemão) Engler, , Piracicaba, 139p. Tese (Doutorado) - Escola Superior de Agricultura Luiz de Queiroz. Universidade de São PauloMoraes, P.L.R., (1998) Estrutura genética de populações de Crytocarya moschata Nees & Martius ex Nees (Lauraceae), , Rio Claro, 190p. Tese (Doutorado) - Universidade Estadual Paulista - Rio ClaroMurawski, D.A., Reproductive biology and genetics of tropical trees from a canopy perspective (1995) Forest canopies, pp. 457-493. , Lowman, M.D.Nadkarmi, N.M. New York: Academic PressNei, M., Maruyama, T., Chakraborty, R., The bottlenek effect and genetic variability in populations (1975) Evolution, 29, pp. 1-10Reis, M.S., (1996) Distribuição e dinâmica da variabilidade genética em populações naturais de palmiteiro (Euterpe edulis M.), , Piracicaba, 210p. Tese (Doutorado) - Escola Superior de Agricultura Luiz de Queiroz. Universidade de São PauloSantos, P.S., Fragmentação de habitats: Implicações para a conservação in situ (1995) Oecologia brasiliensis, , Esteves, F.A., ed., Local: Editora, 616pSebbenn, A.M., (1997) Estrutura genética de subpopulações de Genipa americana L. (Rubiaceae) a partir de isoenzimas, , Piracicaba, 107p. Tese (Mestrado) - Escola Superior de Agricultura Luiz de Queiroz. Universidade de São PauloSlatkin, M., Barton, N.H., A comparison of three indirect methods for estimating average leves of gene flow (1989) Evolution, 43 (7), pp. 1349-1368Souza, L.M.F.I., (1997) Estrutura genética de populações naturais de Chorisia speciosa St. Hill (Bombacaceae) em fragmentos florestais na região de Bauru (SP) - Brasil, , Piracicaba, 76p. Tese (Mestrado). Escola Superior de Agricultura Luiz de Queiroz. Universidade de São PauloSouza Jr., C.L., (1995) Melhoramento de espécies de propagaçõo vegetativa, , Piracicaba: Departamento de Genética / ESALQ/USP, 41p (Publicações didáticasSwofford, D.L., Selander, R.B., (1997) Byosys-2: A computer program for the analysis of allelic variation in population genetics and biochemical systematics. Release 1,7, , ChicagoIllinois Natural History Survey, 78pViana, V.M., Conservação da biodiversidade de fragmentos de florestas tropicais em paisagens intensivamente cultivadas (1995) Conferência Internacional on Common Group Interdisciplinary Approaches to Biodiversity Conservation and Land use Dynamics in the New World, pp. 135-154. , Belo Horizonte, 1995. Anais. Belo HorizonteWeir, B.S., (1996) Genetic data analysis: 2- methods for discrete population genetic data, , Sunderland: Sinauer Associates, 445pWolf, P.G., Campbell, D.R., Hierarchical analysis of allozymic and morphometric variation in a montane herb, Ipomopsis aggregata (polemoniaceae) (1995) Journal of heredity, 86, pp. 386-394Wright, S., The interpretation of population structure by F-statistics with special regard to systems of mating (1965) Evolution, 19, pp. 395-420Wright, S., Isolation by distance (1943) Genetics, 28, pp. 114-138Ang, R.C., Yeh, F., Patterns of gene flow and geographic structure in Pinus contorta Dougl (1995) Forest genetics, 2 (2), pp. 65-75Young, A., Boyle, T., Brown, T., The population genetic consequences of habitat fragmentation for plants (1996) Tree, 11 (10), pp. 413-41

    Allelopathic potential of bark and leaves of Esenbeckia leiocarpa Engl. (Rutaceae)

    No full text
    We investigated the inhibitory potential of aqueous extracts of bark and leaves of Esenbeckia leiocarpa Engl. on lettuce germination and early seedling growth. We compared the effects of four concentrations (100, 75, 50 and 25%) of each extract to water and polyethylene glycol (PEG 6000) solution controls for four replicates of 50 seeds for germination and four replicates of ten seedlings for seedling growth. The inhibitory effects of E. leiocarpa extracts on the percentage of germination and on the germination speed seemed to be more than simply an osmotic effect, except for the percentage of seeds germinated in bark extracts. When compared to water control, both bark and leaf extracts delayed germination, and leaf extracts also affected the percentage of germinated seeds. Leaf extracts of all concentrations strongly inhibited the development of seedlings and caused them some degree of abnormality; bark extracts also caused abnormalities and reduced seedling growth. Root development was more sensitive to the extracts than hypocotyl growth. The negative effects of leaf extracts on germination and seedling growth were more pronounced than those of bark extracts, and the overall effects of both extracts were positively correlated with extract concentrations
    corecore