2,545 research outputs found

    Towards realistic implementations of a Majorana surface code

    Full text link
    Surface codes have emerged as promising candidates for quantum information processing. Building on the previous idea to realize the physical qubits of such systems in terms of Majorana bound states supported by topological semiconductor nanowires, we show that the basic code operations, namely projective stabilizer measurements and qubit manipulations, can be implemented by conventional tunnel conductance probes and charge pumping via single-electron transistors, respectively. The simplicity of the access scheme suggests that a functional code might be in close experimental reach.Comment: 5 pages, 1 p. suppl.mat, PRL in pres

    Quantum Stirring in low dimensional devices

    Full text link
    A circulating current can be induced in the Fermi sea by displacing a scatterer, or more generally by integrating a quantum pump into a closed circuit. The induced current may have either the same or the opposite sense with respect to the "pushing" direction of the pump. We work out explicit expressions for the associated geometric conductance using the Kubo-Dirac monopoles picture, and illuminate the connection with the theory of adiabatic passage in multiple path geometry.Comment: 6 pages, 5 figures, improved versio

    Computationally Efficient Gaussian Maximum Likelihood Methods for Vector ARFIMA Models

    Get PDF
    In this paper, we discuss two distinct multivariate time series models that extend the univariate ARFIMA model. We describe algorithms for computing the covariances of each model, for computing the quadratic form and approximating the determinant for maximum likelihood estimation, and for simulating from each model. We compare the speed and accuracy of each algorithm to existing methods and measure the performance of the maximum likelihood estimator compared to existing methods. We also fit models to data on unemployment and inflation in the United States, to data on goods and services inflation in the United States, and to data about precipitation in the Great Lakes.Statistics Working Papers Serie

    Low-temperature ordered phases of the spin-12\frac{1}{2} XXZ chain system Cs2_2CoCl4_4

    Full text link
    In this study the magnetic order of the spin-1/2 XXZ chain system Cs2_2CoCl4_4 in a temperature range from 50 mK to 0.5 K and in applied magnetic fields up to 3.5 T is investigated by high-resolution measurements of the thermal expansion and the specific heat. Applying magnetic fields along a or c suppresses TNT_\textrm{N} completely at about 2.1 T. In addition, we find an adjacent intermediate phase before the magnetization saturates close to 2.5 T. For magnetic fields applied along b, a surprisingly rich phase diagram arises. Two additional transitions are observed at critical fields μ0HSF10.25\mu_0 H_{SF1}\simeq 0.25 T and μ0HSF20.7\mu_0 H_{SF2}\simeq 0.7 T, which we propose to arise from a two-stage spin-flop transition.Comment: 10 pages, 10 figure

    The Averaged Periodogram Estimator for a Power Law in Coherency

    Get PDF
    We prove the consistency of the averaged periodogram estimator (APE) in two new cases. First, we prove that the APE is consistent for negative memory parameters, after suitable tapering. Second, we prove that the APE is consistent for a power law in the cross-spectrum and therefore for a power law in the coherency, provided that sufficiently many frequencies are used in estimation. Simulation evidence suggests that the lower bound on the number of frequencies is a necessary condition for consistency. For a Taylor series approximation to the estimator of the power law in the cross-spectrum, we consider the rate of convergence, and obtain a central limit theorem under suitable regularity conditions.J.P. Morgan Chase and Co. and New York UniversityStatistics Working Papers Serie

    No-splitting property and boundaries of random groups

    Full text link
    We prove that random groups in the Gromov density model, at any density, satisfy property (FA), i.e. they do not act non-trivially on trees. This implies that their Gromov boundaries, defined at density less than 1/2, are Menger curves.Comment: 20 page

    Instability of the symmetric Couette-flow in a granular gas: hydrodynamic field profiles and transport

    Full text link
    We investigate the inelastic hard disk gas sheared by two parallel bumpy walls (Couette-flow). In our molecular dynamic simulations we found a sensitivity to the asymmetries of the initial condition of the particle places and velocities and an asymmetric stationary state, where the deviation from (anti)symmetric hydrodynamic fields is stronger as the normal restitution coefficient decreases. For the better understanding of this sensitivity we carried out a linear stability analysis of the former kinetic theoretical solution [Jenkins and Richman: J. Fluid. Mech. {\bf 171} (1986)] and found it to be unstable. The effect of this asymmetry on the self-diffusion coefficient is also discussed.Comment: 9 pages RevTeX, 14 postscript figures, sent to Phys. Rev.

    Thermopower of Single-Molecule Devices

    Full text link
    We investigate the thermopower of single molecules weakly coupled to metallic leads. We model the molecule in terms of the relevant electronic orbitals coupled to phonons corresponding to both internal vibrations and to oscillations of the molecule as a whole. The thermopower is computed by means of rate equations including both sequential-tunneling and cotunneling processes. Under certain conditions, the thermopower allows one to access the electronic and phononic excitation spectrum of the molecule in a linear-response measurement. In particular, we find that the phonon features are more pronounced for weak lead-molecule coupling. This way of measuring the excitation spectrum is less invasive than the more conventional current-voltage characteristic, which, by contrast, probes the system far from equilibrium.Comment: 13 pages, 7 figures included; minor changes, version published in PR
    corecore