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Abstract: We prove the consistency of the averaged periodogram estimator (APE) in two new
cases. First, we prove that the APE is consistent for negative memory parameters, after suitable
tapering. Second, we prove that the APE is consistent for a power law in the cross-spectrum and
therefore for a power law in the coherency, provided that sufficiently many frequencies are used
in estimation. Simulation evidence suggests that the lower bound on the number of frequencies
is a necessary condition for consistency. For a Taylor series approximation to the estimator of
the power law in the cross-spectrum, we consider the rate of convergence, and obtain a central
limit theorem under suitable regularity conditions.

1 Introduction

The averaged periodogram estimator (APE) was first introduced by Robinson [1994] and was
extended to estimate the memory parameters of multiple time series by Lobato [1997]. As far
as we are aware, no one has applied the APE to estimating the memory parameter of a long
memory time series in the case where the memory parameter may be negative. Furthermore,
while Lobato applied the APE to multivariate time series, he did not estimate the power law in
the cross-spectrum. This paper addresses both of these issues.

In this paper, we will focus on real-valued bivariate time series, Xt = (x1t, x2t)′, with a
spectral density matrix given by:

f(λ) =
(

f11(λ) f12(λ)
f21(λ) f22(λ)

)
, λ ∈ [−π, π]
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where f∗(λ) = f(λ) and f(−λ) = f(λ), with A∗ denoting the conjugate transpose of a matrix
A. In this paper, we assume that the individual series have long memory, so that the spectral
densities obeys fjj(λ) ∼ Cj |1− e−iλ|−2dj as λ → 0+, for Cj > 0, dj < 1

2 , and j = 1, 2. We will
sometimes use djj as an alternative notation for dj .

The cross-spectrum, f12(λ), can be decomposed into the phase, φ(λ), the coherency, ρ(λ),
and terms involving the auto-spectra:

f12(λ) =
√

f11(λ)f22(λ)ρ(λ)eiφ(λ) (1.1)

where the coherency is a real, even function with 0 ≤ ρ(λ) ≤ 1 and the phase is an odd function
that we assume lies in the interval (−π, π]. In this paper, we will focus on the behavior of the
coherency. Specifically, we assume that |f12(λ)| ∼ C12|1 − e−iλ|−2d12 , where d12 ≤ 1

2(d1 + d2).
(If d12 > 1

2(d1 + d2), the spectral density matrix would not be positive definite and the implied
coherency would be greater than one.) Then, the coherency satisfies:

ρ(λ) = Cρλ
−2dρ + o(λ−2dρ) (1.2)

as λ → 0+, where Cρ > 0 and dρ = d12 − 1
2(d1 + d2) ≤ 0. When dρ < 0, we will refer to the

time series as having power law coherency. The fact that d12 need not equal 1
2(d1 + d2) was

mentioned by Lobato [1997, page 139], though he did not try to estimate d12. We present one
time-domain example of power law coherency in Section 2. For additional time-domain examples
and a discussion of possible behaviors of the phase, see Sela [2010].

There is a large literature on semiparametric methods for estimating d1, d2, based on the
periodogram in a neighborhood of zero. Estimation methods that can be applied to univariate
series include the averaged periodogram estimator (APE) [Robinson, 1994, Lobato and Robinson,
1996], the log periodogram (GPH) estimator [Geweke and Porter-Hudak, 1983, Robinson, 1995a],
and the Gaussian semiparametric estimator (GSE) [Kunsch, 1987, Robinson, 1995b]. Many of
these methods have been studied for multivariate time series (Lobato [1997] for APE, Lobato
[1999], Shimotsu [2007] for GSE), but the power laws being estimated have been only d1, d2, not
d12 as far as we are aware.

In Section 2, we introduce a semiparametric long-memory time series model that allows for
power law coherency, and present a time-domain example. In Section 3, we first show that
the averaged periodogram estimator (APE) is consistent for d1, d2 < 1/2 and for d12, under
certain conditions. Then, we consider a Taylor series approximation to the proposed estimator
of d12, derive its rate of convergence and, in the case d12 < 1/4, obtain a central limit theorem.
Unfortunately, as we will see in simulations in Section 4, high variability of the estimators in
sample sizes typically used in practice makes power laws in the coherency hard to detect with
the APE. In Section 5, we apply the APE to a bivariate time series of two components of the
money supply.
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2 Semiparametric model

We introduce a semiparametric model for a bivariate time series, {Xt}, that will allow for power
law coherency (as well as many other types of behavior). Each {xjt}, for j = 1, 2, is the sum of
up to p component series, where each component series may have a different memory parameter.
Making this representation explicit allows us to calculate the resulting behavior of the coherency
in a neighborhood of zero frequency. Though our model is semiparametric in the sense that it
specifies power laws only in a neighborhood of zero frequency, we do (for ease of presentation
and proofs) in some of the assumptions below place conditions on certain functions that are
global in that they hold on [−π, π] − {0}. As Chen and Hurvich [2006, page 2948] note in a
related context, it may be possible (and would be desirable) to replace these assumptions by
local versions, but we will not pursue this here.

We assume that {Xt} has the infinite-order moving average representation

Xt =
∞∑

r=−∞
ψrεt−r (2.1)

where the real-valued 2×p matrices, ψr, are specified below and εt = (ε1t, . . . , εpt)′ is a p-variate,
zero-mean series (p ≥ 2) that satisfies the following:

Assumption 1 {εt} is independent and identically distributed with:

• Cov(εt) = 2πΣ, where Σ is symmetric and positive definite.

• E
(
ε4kt

)
< ∞ for k = 1, . . . , p.

Allowing for more than two driving innovation series allows for straightforward descriptions of a
rich variety of models. Other authors, including Hannan [1970] and Robinson [2008], have also
allowed p > 2 in models for a bivariate series. As Robinson [2008] states, ”This is natural if [the
components of {Xt}] are seen as just two of a vector of related observations that are analyzed
pairwise.” Power law coherency is easily obtained in such a framework, since the entries of {Xt}
can then have some common long-memory components and some idiosyncratic components,
with the memory in the common components weaker than that for any of the idiosyncratic
components.

Equation (2.1) implies that {Xt} is the output of passing {εt} through a linear filter with
transfer function Ψ(λ) =

∑∞
r=−∞ ψre

−iλr, a 2 × p matrix with entries Ψjk(λ), for j = 1, 2 and
k = 1, . . . , p. For each (j, k), we generalize Chen and Hurvich [2006] and consider transfer
functions, Ψjk(λ) on [−π, π], that can be written as:

Ψjk(λ) = (1− e−iλ)−δjkτjk(λ)eiϕjk(λ) (2.2)
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with τjk(λ), δjk, ϕjk(λ) satisfying Assumptions 2-5 (Assumption 5 appears after some discussion
of Assumptions 2-4). These assumptions relax those of Chen and Hurvich [2006] since we do not
require for all j, k that δjj ≥ δjk, or that τjk(0) > 0, or that τjk(λ) and ϕjk(λ) are differentiable
at zero frequency.

Assumption 2 For j = 1, 2 and k = 1, . . . , p, τjk(λ) is a real, bounded, non-negative, contin-
uous, even function on [−π, π] that is differentiable on [−π, π] − {0}, and there exist positive
constants C, A and Ξ such that |τ ′jk(λ)| ≤ Cλ−1+Ξ for all λ ∈ (0, A). Furthermore, either
τjk(0) > 0 or τjk(λ) ≡ 0 for all λ ∈ [0, π]; for each j, τjk(0) > 0 for at least one k.

Assumption 3 δjk < 1/2 for all j = 1, 2 and k = 1, . . . , p.

Assumption 4 ϕjk(λ) is an odd, differentiable function on [−π, π]−{0}, where limλ→0+ ϕjk(λ)
exists and ϕ′jk(λ) is continuous at 0 or there exist positive constants C, A and Ξ such that
|ϕ′jk(λ)| ≤ Cλ−1+Ξ for all λ ∈ (0, A).

The decomposition in Equation (2.2) separates the transfer function into three different
operations that transform the series {εkt} into a component of {xjt}. First, (1 − e−iλ)−δjk is
the fractional integration operator of order δjk. Because δjk varies with k, {xjt} consists of
components with potentially different orders of integration. Second, τjk(λ) is either a filter
that changes the short-memory properties of the resulting fractionally integrated or a filter that
annihilates the component. Finally, ϕjk(λ) changes the phase of {xjt} relative to the original
{εkt}. For example, if ϕjk(λ) = −aλ, for some real a, then the component of {xjt} that depends
on {εkt} is lagged by a periods. More complicated phase shifts are also possible.

The spectral density of {Xt} is simply:

f(λ) = Ψ(λ)ΣΨ(λ)∗, λ ∈ [−π, π]

Using the representation in Equation (2.2), the autospectral densities, f1(λ) and f2(λ), are given
for j = 1, 2, λ ∈ [−π, π] by:

fj(λ) =
p∑

k=1

p∑

l=1

(1− e−iλ)−δjk(1− eiλ)−δjlσklτjk(λ)τjl(λ)ei(ϕjk(λ)−ϕjl(λ))

where σkl is the (k, l) element of Σ. The power laws in the auto-spectra are determined by the
largest δjk that have non-zero coefficients, τjk(0)2, in the contribution to the sum above with
k = `; the contribution for k 6= ` will not change the power law in the auto-spectrum. Thus, we
define

dj = max
k:τjk(0)>0

δjk .
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We will sometimes find it convenient to use the alternative notation djj for dj , and fjj(λ) for
fj(λ). The semiparametric model implies that, as λ → 0+:

fj(λ) ∼ Cjλ
−2dj (2.3)

where

Cj = lim
λ→0+

p∑

k=1

p∑

l=1

σklτjk(λ)τjl(λ)ei(ϕjk(λ)−ϕjl(λ))χ(δjk = δjl = dj) (2.4)

and χ is an indicator function. Note that Cj > 0 since it can be expressed as a quadratic form
in the positive definite matrix, Σ, after expressing the indicator function in (2.4) as the product
χ(δjk = dj)χ(δjl = dj).

In describing the cross-spectrum and coherency, it will be convenient to separate the power
law into its modulus and argument. When λ ∈ (0, π], we use the identity (1 − e−iλ) =∣∣2 sin λ

2

∣∣ ei(π−λ)/2 to rewrite Equation (2.2) as:

Ψjk(λ) =
∣∣∣∣2 sin

λ

2

∣∣∣∣
−δjk

τjk(λ)ei(ϕjk(λ)−(π−λ)δjk/2) (2.5)

Using Equations (2.2), (2.5), and the identity above, we find that for λ ∈ (0, π], the cross-spectral
density is given by:

f12(λ) =
p∑

k=1

p∑

l=1

(1− e−iλ)−δ1k(1− eiλ)−δ2lσklτ1k(λ)τ2l(λ)ei(ϕ1k(λ)−ϕ2l(λ))

=
p∑

k=1

p∑

l=1

∣∣∣∣2 sin
λ

2

∣∣∣∣
−δ1k−δ2l

σklτ1k(λ)τ2l(λ)ei[ϕ1k(λ)−ϕ2l(λ)−(π−λ)δ1k/2+(π−λ)δ2l/2]

In order to understand the power law behavior of the cross-spectrum, we decompose the sum
above into a sum of terms where the power, δ1k + δ2l, is constant. To do this, partition the
set of {(k, l) : k, l ∈ {1, ..., p}} into sets S1, ..., SQ̃ such that δ1k + δ2l = δ1k′ + δ2l′ if and only if
(k, l), (k′, l′) are in the same set. Define d12(q̃) to be the value of 1

2(δ1k + δ2l) for (k, l) ∈ Sq̃ for
q̃ = 1, ..., Q̃, with d12(q̃) > d12(q̃ + 1) for all q̃ = 1, ..., Q̃ − 1. Note that d12(1) = 1

2(d1 + d2).
Then, for 0 < λ < π, we may write:

f12(λ) =
Q̃∑

q̃=1

∣∣∣∣2 sin
λ

2

∣∣∣∣
−2d12(q̃)

s(λ; q̃) (2.6)

where
s(λ; q̃) =

∑

(k,l)∈Sq̃

σklτ1k(λ)τ2l(λ)ei[ϕ1k(λ)−ϕ2l(λ)−(π−λ)δ1k/2+(π−λ)δ2l/2]. (2.7)

Define

s(0; q̃) := lim
λ→0+

s(λ; q̃) =
∑

(k,l)∈Sq̃

σklτ1k(0)τ2l(0) lim
λ→0+

(
ei[ϕ1k(λ)−ϕ2l(λ)−(π−λ)δ1k/2+(π−λ)δ2l/2]

)
.
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To ensure that the power law behavior in the cross-spectral density is determined by the terms
containing

∣∣2 sin λ
2

∣∣−d12(q̃)
instead of by the s(λ; q̃), we make the following assumption:

Assumption 5 There is at least one q̃ such that s(0; q̃) 6= 0. Let q̃0 be the smallest such q̃.
Then, we define:

d12 = d12(q̃0) (2.8)

Whenever s(0; q̃) = 0, we assume that there exist positive constants C, A and Ξ such that

|s(λ; q̃)| ≤ C
(
λ−2(d12−d12(q̃))+Ξ

)
, λ ∈ (0, A).

Using this representation, we describe the power laws in the modulus of the cross-spectrum
and the coherency in a neighborhood of zero frequency. As λ → 0+, the modulus of the cross
spectrum and the coherency obey:

|f12(λ)| ∼ C12λ
−2d12

ρ(λ) ∼ C12√
C1C2

λ−2(d12− 1
2
(d1+d2)) (2.9)

where the power law of the cross-spectrum, d12, is defined by Equation (2.8), C1, C2 are defined
by Equation (2.3) and C12 = |s(0; q̃0)|. Since δ1k + δ2l ≤ d1 + d2, d12 is bounded above by
1
2(d1 + d2). In the case where d12 < 1

2(d1 + d2), power law coherency occurs. We define:

dρ = d12 − 1
2
(d1 + d2) (2.10)

The only decay rate of the cross-spectral density that will not lead to power law coherency
is d12 = 1

2(d1 + d2), that is, dρ = 0. Autoregressive fractionally integrated moving average
(ARFIMA) models will have dρ = 0, and hence no power law coherency. Fractional cointegration
of the components of {Xt}, though not ruled out in this paper, nevertheless implies that dρ = 0,
and indeed that ρ(0) = 1, so once again there would be no power law coherency in this case.
Under Assumption 5, power law coherency will occur if and only if s(0; 1) = 0.

We present here a parametric model that has power law coherency. Assume that d3 <
d2 ≤ d1 < 1/2 and that ε1t, ε2t, ε3t are independent white noise series with variances σ2

1, σ
2
2, σ

2
3,

respectively. Define a bivariate time series by:

x1t = (1− L)−d3ε3t + (1− L)−d1ε1t

x2t = (1− L)−d3ε3t + (1− L)−d2ε2t (2.11)

6



where L is the backshift operator. As λ → 0+, we have

f1(λ) ∼ σ2
1

2π
λ−2d1

f2(λ) ∼ σ2
2

2π
λ−2d2

f12(λ) ∼ σ2
3

2π
λ−2d3

ρ(λ) ∼ σ2
3

σ1σ2
λ−2(d3− 1

2
(d1+d2))

In this model, {x1t} and {x2t} are long-memory time series with a common component that
has a smaller memory parameter than either of the individual time series. If we instead had
d3 > max(d1, d2), then the two time series would be cointegrated. The two time series are
correlated in the “short run” (for frequencies away from zero), but the strength of the relationship
decays to zero at frequency zero. This occurs because the common component has a smaller
memory parameter and is dwarfed by the more persistent idiosyncratic components at low
frequencies. We therefore refer to the model as an anti-cointegration model. A simulated
realization is shown as a time series in Figure 1. The long-term movements of the time series
are not strongly related, since the levels drift separately with longer memory, but the short-term
movements are related.

3 The averaged periodogram estimator

The averaged periodogram estimator estimates the integrated autospectrum in a neighborhood
of frequency zero by averaging the periodogram near zero frequency. The APE is based on
the periodogram matrix, defined as I(λj) = J(λj)J(λj)∗, where λj = 2πj

n (j = 0, . . . , n − 1) is
the jth Fourier frequency, J(λj) = 1√

2πn

∑n
t=1 Xte

iλjt is the discrete Fourier transform of the
bivariate series and n is the sample size. We will assume that d1, d2 are known to lie in the
interval (−s − 1

2 , 1
2) where s is a non-negative integer; this may occur because the series have

been differenced s times to remove possible non-stationarity and/or a polynomial trend. When
the memory parameter is less than −1

2 , the raw periodogram or cross-periodogram is not a good
estimator of the spectral density because of leakage; thus, authors such as Velasco [1999], Hurvich
and Chen [2000], and Hurvich et al. [2002] recommend tapering the series before computing the
cross-periodogram. Our results assume that the taper of Hurvich and Chen [2000] is used. Using
the notation of Hurvich et al. [2002], the first-order taper is given by:

ht = (1− ei2πt/n) , t = 1, . . . , n . (3.1)

If d1, d2 ∈
(−1

2 − s, 1
2

)
, the order-s taper hs

t is used, where hs
t is ht raised to the power s. Then,

the tapered discrete Fourier transform is J(λj) = 1√
2πnas

∑n
t=1 hs

tXte
itλj , with as =

(
2s
s

)
=

1
n

∑n
t=1 |ht|2s, and the tapered periodogram is I(λj) = J(λj)J(λj)∗. This tapering reduces
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Figure 1: One simulated realization (n = 500) of the power law coherency model (2.11), with
d1 = d2 = 0.49, and d3 = 0.3.

8



the leakage at the low frequencies and therefore reduces the bias of estimators based on the
periodogram.

In view of (2.9), it may seem reasonable to try to estimate d12 using linear regression of
{log |I12(λj)|}m

j=1 on {−1
2 log λj}m

j=1 with m−1 +m/n → 0, where I12, the (1, 2) entry of I, is the
cross-periodogram. One could also consider related estimators based on the log moduli of (say,
contiguous) averages of the cross periodogram

∑L
`=0 I12(λj+`) where L ≥ 0 is a fixed integer.

However, we believe that such estimators will be inconsistent for d12, converging instead to
(d1 + d2)/2. To provide some intuition for this claim, we focus temporarily (in this paragraph
only) on the anti-cointegration model, we set s = 0, and we consider the Bartlett approximation
to the periodogram matrix, M = Ψ(λ)IεΨ∗(λ) where Iε is the periodogram of {εt}n

t=1. A
straightforward calculation reveals that

|λj |d1+d2

∣∣∣∣∣
L∑

`=0

M12(λj+`)

∣∣∣∣∣ =

∣∣∣∣∣
L∑

`=0

Jε1(λj+`)Jε2(λj+`)
(

j

j + `

)d1+d2

∣∣∣∣∣ + op(1) .

Thus,

log

∣∣∣∣∣
L∑

`=0

M12(λj+`)

∣∣∣∣∣ = −(d1 + d2) log |λj |+ ηj

where the ηj are Op(1) and weakly dependent. This suggests that a regression of
{log |∑L

`=0 I12(λj+`)|}m
j=1 on {−1

2 log λj}m
j=1 would converge to (d1 + d2)/2 and not to d12. A

small simulation study for L = 0, L = 1 supports this conclusion. We considered 250 replications
of the anti-cointegration model with d1 = d2 = 0.2, d3 = d12 = 0, m = n0.5. For n = 512, the
regression estimator of d12 described above yielded a mean value (t-statistic) of 0.124 (t = 15.32)
when L = 0 and 0.123 (t = 15.19) when L = 2. For n = 8192 the mean value and t-statistic,
both for L = 1 and L = 2, were 0.161 (t = 47.14). These results suggest that the estimator is
not approaching the true value d12 = 0, and are consistent with the claim that the estimator is
instead approaching (d1 + d2)/2 = 0.2.

Another possibility would be to construct a version of the Gaussian Semiparametric estimator
to estimate d12. The argument presented above, however, suggests that once again such an
estimator would be inconsistent, unless it explicitly accounts for power law behavior in all 2p
entries of Ψ, and also accounts for the p2 entries of Σ. Such an estimator would be cumbersome
in practice, and would also require choice of the unknown p.

In the sequel, we adapt the averaged periodogram estimator (APE) of Robinson [1994], which
he applied in the univariate case when 0 < d < 1

2 . In the univariate case, the APE is given by:

d̂ =
1
2
− log(F̂ (qλm)/F̂ (λm))

2 log q

where F̂ (λ) = 2π
n

∑[nλ/2π]
j=1 I(λj), m is a bandwidth (depending on n) in {1, · · · , bn/2c} and

q ∈ (0, 1) is fixed. Lobato and Robinson [1996] derived additional results about the limiting
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distribution of a suitably standardized version of d̂ under various conditions, showing that it
is normal when 0 < d < 1/4 and non-normal for 1/4 < d < 1/2. Lobato [1997] applied the
averaged periodogram estimator to estimating d1, d2 in the multivariate case. While he did note
(on page 139) the possibility of power law coherency, he was focused on estimating the memory
parameters of the auto-spectra, not a power law in the coherency in a neighborhood of 0; in his
Condition C1, he required that ρ(0) > 0. In contrast, we are particularly interested in estimating
the power law of the cross-spectral density. Thus, we extend the consistency results of Robinson
[1994] and Lobato [1997] in two ways: to the case in which d < 0 and to the estimation of d12.
The following lemma provides an expression for the integrated cross (or auto) spectral density.

Lemma 1 Define Fab(λ) =
∫ λ
0 fab(θ)dθ for λ ∈ (0, π]. Under Assumptions 1-5,

F12(λ) ∼ 1
1− 2d12

s(0; q̃0)λ1−2d12 , λ → 0+,

and for j = 1, 2,

Fjj(λ) ∼ 1
1− 2dj

Cjλ
1−2dj , λ → 0+.

In order to prove some results about the averaged periodogram estimator (with or without
tapering), we make use of an additional global assumption on the product τjk(λ)eiϕjk(λ), based
on Definition 2 of Hurvich et al. [2002, page 316]. From the discussion provided there, it follows
that this condition would hold, for example, in the power law coherency example presented
above .

Definition 1 For some µ > 1, γ ∈ (1, 2], let L∗(µ, γ) be the set of functions u(λ), continuous
on [0, π] and differentiable on (0, π], such that for all 0 < |x|, |y| < π,

max0≤z≤π |u(z)|
min0≤z≤π |u(z)| ≤ µ

|u(x)− u(y)|
min0≤z≤π |u(z)| ≤ µ

|y − x|
min(|x|, |y|)

|u′(x)− u′(y)|
min0≤z≤π |u(z)| ≤ µ

|y − x|γ−1

[min(|x|, |y|)]γ

Assumption 6 For all j, k, either τjk(λ) = 0 for all λ ∈ [0, π], or τjk(λ)eiϕjk(λ) ∈ L∗(µ, γ) for
some µ > 1, γ ∈ (1, 2].

The next assumption requires that the data have been tapered to a sufficiently high order.
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Assumption 7 dj , δjk ∈
(−1

2 − s, 1
2

)
, for some non-negative integer, s, and for all j ∈ {1, 2},

k ∈ {1, · · · , p}, and the data are tapered of order s.

Finally, we will consider consistency results under two different assumptions about the growth
of the number of frequencies used in estimation as the sample size grows. The first is standard
[for example, Robinson, 1994, Condition B] and is sufficient for the estimation of the memory
parameters of the auto-spectra. The second is less common.

Assumption 8
1
m

+
m

n
→ 0

as n →∞.

Assumption 9 As n →∞:

• If 1− γ
2 < d1 + d2 < 1,

n
−2dρ

1−2d12

m
→ 0

• If d1 + d2 ≤ 1− γ
2 ,

n
−2dρ

γ/2−2dρ

m
→ 0.

Notice that the growth rates above change continuously, since −2dρ

1−2d12
= 2dρ

2dρ−γ/2 when d1 +
d2 = 1− γ

2 . The required growth rates (as a power of n) for three choices of d1 + d2 are shown
in Figure 2. Unlike most assumptions on the growth rate of m in the context of long memory,
Assumption 9 requires a lower bound on the growth rate of m. (Hurvich et al. [2005, Equation
(3.9)] is one other paper that requires a lower bound on the growth rate of m.) In practice,
this assumption is likely to be problematic because it depends on the unknown d12 and dρ,
two of the very quantities that we wish to estimate. Larger growth rates of m are generally
associated with increased finite-sample bias in estimation. Furthermore, theorems establishing
limiting normality of the estimated memory parameter generally require that the growth rate of
m be bounded above, with a tighter bound when the spectral density is less smooth. [See, for
example, Lobato and Robinson, 1996, Condition C3.] These opposing requirements are likely
to cause problems for the averaged periodogram estimator for the cross-spectral density when
dρ is very negative.

In the case a 6= b, Assumption 9 is needed for the Bartlett-type approximation (3.4), while
Assumptions 10–12 below are needed for sums of the scaled innovation periodogram matrix to be
good approximations to corresponding sums of the cross spectral density in (3.5). Once again,
Assumptions 10–12 impose lower bounds on the growth rate of m.

11



Figure 2: Minimum growth rate of m required by Assumption 9 as a function of dρ.

Assumption 10 If −2d11 − 2d22 < −1, as n →∞:

n
d12−2dρ
1−d12

m
→ 0 .

Assumption 11 If −2d11 − 2d22 = −1, as n →∞:

(log(m))
1

1−d12
n

d12−2dρ
1−d12

m
→ 0 .

Assumption 12 As n →∞:

n
−4dρ
1−4dρ

m
→ 0 .

Theorem 2 If Assumptions 1–8 hold, for a, b ∈ {1, 2},

F̂ab(λm)− Fab(λm) = op(λ1−da−db
m ). (3.2)

If a 6= b, under the assumptions above together with Assumptions 9–12, we also have:

F̂ab(λm)− Fab(λm) = op(λ1−2dab
m ). (3.3)

12



When a = b, the theorem extends the result of Robinson [1994] to the case where da < 0 and
tapering may be used. In that case, the second part of the theorem is irrelevant and no lower
bound on m is necessary beyond the condition that m → ∞. When the theorem is applied to
the estimation of the cross-spectrum, power law coherency will affect the choice of m, with a
more negative dρ placing a more stringent requirement on m.

Proof. As in Chen and Hurvich [2006], define j̃ = j + s
2 to be the shifted Fourier frequency.

Define Iε(λ) to be the tapered periodogram of εt, with (a, b) element Iε,ab(λ). Let Ψa(λ) be
the ath row of Ψ(λ). Generalizing the proofs of Robinson [1994, Theorem 1] and Lobato [1997,
Theorem 1], we decompose the difference between the estimated averaged periodogram and the
true averaged periodogram as:

F̂ab(λm)− Fab(λm) =
2π

n

m∑

j=1

(
Iab(λj)−Ψa(λj̃)Iε(λj)Ψ∗

b(λj̃))
)

(3.4)

+
2π

n

m∑

j=1

(
Ψa(λj̃)Iε(λj)Ψ∗

b(λj̃)− fab(λj)
)

(3.5)

+
2π

n

m∑

j=1

fab(λj)− Fab(λm) (3.6)

Lemma 6 shows that the first term is op(λ1−daa−dbb
m ) under Assumptions 1-8 and op(λ1−2dab

m )
if we also include Assumption 9. Lemma 8 shows that the second term is op(λ1−daa−dbb

m ) under
Assumptions 1–5, 7–8 and is op(λ1−2dab

m ) if we also include Assumptions 10, 11 and 12. Lemma
9 shows that the last term is o(λ1−2dab

m ) and therefore op(λ1−daa−dbb
m ).

The result in Equation (3.3) can be used directly in Theorem 3 of Robinson [1994] to show
that the averaged periodogram estimator is consistent for the memory parameter of the cross-
spectral density under Assumption 9. We estimate the memory parameter of the cross-spectral
density by using the fact from Lemma 1 that

F12(λ) ∼ 1
1− 2d12

s(0; q̃0)λ1−2d12 , λ → 0+.

Because s(0; q̃0) is complex, there are two possible ways to estimate d12 based on F12(λ). First,
one could apply Robinson’s theorem to the modulus of F12(λ). Second, one could apply the
theorem separately for the real and imaginary parts of F12(λ) and take a weighted average
based on ϕab(0). We recommend using the modulus; simulations have shown that it performs
somewhat better than taking an average, even in the infeasible case where the optimal weights
are known.
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Theorem 3 Define, for a fixed q ∈ (0, 1), and for a, b ∈ {1, 2},

d̂ab =
1
2
−

log
(
|F̂ab(qλm)|/|F̂ab(λm)|

)

2 log q
.

For a = b, if Assumptions 1–8 hold,

d̂aa(λm)− daa = op(1). (3.7)

For a 6= b, under the assumptions above together with Assumptions 9–12,

d̂ab(λm)− dab = op(1). (3.8)

We may then estimate d̂ρ = d̂12− 1
2(d̂1+d̂2), where d̂12, d̂1, d̂2 are estimated using the averaged

periodogram estimator; d̂ρ is consistent. Alternatively, d̂1, d̂2 could be estimated with another
estimator that is consistent for univariate memory parameters. However, the convergence rate
of d̂ρ will generally depend on the worst convergence rate of the three estimators. To be precise,
suppose that d̂12 = Op(n−α12) and d̂j = Op(n−αj ); then, d̂ρ = Op(n−min(α12,α1,α2)). As we will
see in simulations in the next section and in Section 5, d̂12 and d̂ρ are extremely variable in
sample sizes typically used in practice.

Proof of Theorem 3. We have

d̂ab =
1
2
− 1

2 log q

(
log

∣∣∣∣∣
F̂ab(qλm)
Fab(qλm)

∣∣∣∣∣− log

∣∣∣∣∣
F̂ab(λm)
Fab(λm)

∣∣∣∣∣ + log
∣∣∣∣
Fab(qλm)
Fab(λm)

∣∣∣∣
)

. (3.9)

We have log
∣∣∣ F̂ab(qλm)
Fab(qλm)

∣∣∣ = op(1) and log
∣∣∣ F̂ab(λm)
Fab(λm)

∣∣∣ = op(1). For a = b, these results follow from
(3.2) and the second part of Lemma 1, and for a = 1, b = 2 (under Assumptions 9–12) they follow
from (3.3) and the first part of Lemma 1. Lemma 1 implies that Fab(qλm)/Fab(λm) ∼ q1−2dab

as n →∞ (making use of Assumptions 9–12 in the case a 6= b), so that

log
∣∣∣∣
Fab(qλm)
Fab(λm)

∣∣∣∣ → (1− 2dab) log q.

Thus, from (3.9),

d̂ab =
1
2
− 1

2 log q

[
(1− 2dab) log q + op(1)

]

= dab + op(1).

We next obtain rates of convergence and a central limit theorem for a Taylor series approx-
imation to d̂12 − d12, under assumptions that include Assumptions 1− 12. Suppose that d12 is
not equal to −1/2, and define

G(λ) =
1

1− 2d12
s(0; q̃0) λ1−2d12
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and

R̃(λ) =

∣∣∣∣∣
F̂12(λ)
G(λ)

∣∣∣∣∣
2

− 1 .

Then

d̂12 =
1
2
−

log
(
|F̂12(qλm)|/|F̂12(λm)|

)

2 log q

and

d̂12 − d12 = −
log

∣∣∣ F̂12(qλm)
G(qλm)

∣∣∣
2
− log

∣∣∣ F̂12(λm)
G(λm)

∣∣∣
2

4 log q
.

Arguing as in Lobato and Robinson [1996], pp. 307−308, we can approximate d̂12 − d12 by

∆m,n =
R̃(λm)− R̃(qλm)

4 log q
.

We will consider bounds on the rate of convergence of ∆m,n to zero, and obtain a central limit
theorem for a standardized version of ∆m,n. Since for any real A,B,C, D we have |A + Bi|2 −
|C + Di|2 = (A + C)(A− C) + (B + D)(B −D), it follows that

4 log q ∆m,n = Re

[
F̂12(λm)
G(λm)

+
F̂12(qλm)
G(qλm)

]
Re

[
F̂12(λm)
G(λm)

− F̂12(qλm)
G(qλm)

]

+Im

[
F̂12(λm)
G(λm)

+
F̂12(qλm)
G(qλm)

]
Im

[
F̂12(λm)
G(λm)

− F̂12(qλm)
G(qλm)

]
. (3.10)

Since by (3.3) F̂12(λm)/G(λm)
p→ 1 and F̂12(qλm)/G(qλm)

p→ 1 we conclude that ∆m,n
p→ 0 at

the same rate as

∆̃m,n =
F̂12(λm)
G(λm)

− F̂12(qλm)
G(qλm)

.

We next decompose ∆̃m,n as

∆̃m,n =
2π

nG(λm)

m∑

j=1

I12(λj)− 2π

nG(qλm)

bqmc∑

j=1

I12(λj)

=
2π

nG(λm)

m∑

j=1

Ψ1(λj̃)Iε(λj)Ψ∗
2(λj̃)−

2π

nG(qλm)

bqmc∑

j=1

Ψ1(λj̃)Iε(λj)Ψ∗
2(λj̃) + R(m,n, q)

where

R(m,n, q) =
2π

nG(λm)

m∑

j=1

Rj − 2π

nG(qλm)

bqmc∑

j=1

Rj
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and Rj = I12(λj) − Ψ1(λj̃)Iε(λj)Ψ∗
2(λj̃). From (7.5) and (7.9) in the proof of Lemma 6 below,

we have under Assumption 9,

R(m,n, q) =

{
Op(n−2dρm2d12−1) if d11 + d22 > 1− γ/2
Op(m−γ/2λ

2dρ
m ) if d11 + d22 < 1− γ/2

(3.11)

which tends to zero under Assumption 9.

Defining S12(λj) = Ψ1(λj̃)Iε(λj)Ψ∗
2(λj̃)− f12(λj), we have

∆̃m,n =
2π

nG(λm)

m∑

j=1

f12(λj)− 2π

nG(qλm)

bqmc∑

j=1

f12(λj)

+S(m,n, q) + R(m,n, q),

where

S(m,n, q) =
2π

nG(λm)

m∑

j=1

S12(λj)− 2π

nG(qλm)

bqmc∑

j=1

S12(λj)

=
(

2π

nG(λm)
− 2π

nG(qλm)

) bqmc∑

j=1

S12(λj) +
2π

nG(λm)

m∑

j=bqmc+1

S12(λj) .

By Lemma 7 and the Cauchy-Schwarz inequality,

E|S(m,n, q)|2 ≤ C

(
2π

nG(λm)
− 2π

nG(qλm)

)2 bqmc∑

j=1

bqmc∑

k=1

|λj̃λk̃|−(d11+d22)

(
1
n

+ χ(|j − k| ≤ s)
)

+C

(
2π

nG(λm)
− 2π

nG(qλm)

)2 m∑

j=bqmc+1

m∑

k=bqmc+1

|λj̃λk̃|−(d11+d22)

(
1
n

+ χ(|j − k| ≤ s)
)

.

Since G(λm) = Cλ1−2d12
m and G(qλm) = Cq1−2d12λ1−2d12

m , we obtain

E|S(m,n, q)|2 ≤ Cλ4d12−2
m

1
n2

m∑

j=1

m∑

k=1

|λj̃λk̃|−(d11+d22)

(
1
n

+ χ(|j − k| ≤ s)
)

= O(λ4d12−2
m

1
n

λ2−2d11−2d12
m ) +





O(n−4dρm4d12−2) if − 2d11 − 2d22 < −1
O(n−4dρm4d12−2 log m) if − 2d11 − 2d22 = −1
O(λ4d12−2d11−2d22

m m−1) if − 2d11 − 2d22 > −1
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by Equations (7.11), (7.14), (7.16), and (7.17). Since dρ = d12 − 1
2(d11 + d22) we have 4d12 −

2d11 − 2d22 = 4dρ and therefore

E|S(m,n, q)|2 = O(
1
n

λ
4dρ
m ) +





O(n−4dρm4d12−2) if − 2d11 − 2d22 < −1
O(n−4dρm4d12−2 log m) if − 2d11 − 2d22 = −1
O(λ4dρ

m m−1) if − 2d11 − 2d22 > −1

Note that the O(n−4dρm4d12−2) term above goes to zero under Assumption 9, since the condition
in the assumption’s second part implies that in its first part. Also, the O(λ4dρ

m m−1) term above
goes to zero by Assumption 12. Thus, we have

∆̃m,n = T (m,n, q) + S(m,n, q) + R(m,n, q)

where a bound on E|S(m,n, q)|2 is given above, a bound for R(m,n, q) is given by (3.11), and
where the deterministic bias term is given by

T (m,n, q) =
2π

nG(λm)

m∑

j=1

f12(λj)− 2π

nG(qλm)

bqmc∑

j=1

f12(λj).

To study the deterministic bias term we will consider the following assumption.

Assumption 13 There exist β ∈ (0, 2] and nonzero constants C1, C2 (possibly complex-valued)
such that, as λ → 0+,

f12(λ) = |λ|−2d12(C1 + C2|λ|β) + o(|λ|−2d12+β).

Under Assumptions 8 and 13,

T (m,n, q) ∼ 1− 2d12

s(0; q0)

[
C1λ

1−2d12
m + C2λ

1−2d12+β
m

λ1−2d12
m

− C1λ
1−2d12
qm + C2λ

1−2d12+β
qm

(qλm)1−2d12

]

=
C2(1− 2d12)

s(0; q0)
(1− qβ)λβ

m .

The following lemma provides the foundation for a central limit theorem for a rescaled version
of ∆̃m,n in the case −2d11 − 2d22 > −1 (which implies that d12 < 1/4).

Lemma 4 Suppose that −2d11−2d22 > −1, and that {εt} is Gaussian. Define γm,n = m2dρ−1/2n−2dρ.
Under Assumptions 1 – 8 and Assumption 12, for any fixed integer r ≥ 3,

cum(S(m,n, q)/γm,n, . . . , S(m,n, q)/γm,n︸ ︷︷ ︸
r terms

) → 0 .
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Note that R(m, n, q)/γm,n = op(1) under Assumption 9, since from (3.11)

R(m,n, q)/γm,n =
{

Op(m−1/2+d11+d22) if d11 + d22 > 1− γ/2
Op(m1/2−γ/2) if d11 + d22 < 1− γ/2

In view of this and (3.10), we have therefore established the following.

Theorem 5 Under the assumptions of Lemma 4 together with Assumption 9, if the three quan-
tities

E[ReS(m,n, q)/γm,n]2 E[ImS(m, n, q)/γm,n]2 E[ReS(m,n, q)ImS(m,n, q)/γ2
m,n]

tend to finite constants, not all zero, then γ−1
m,n[∆̃m,n − T (m,n, q)] is asymptotically complex

normal with zero mean, and γ−1
m,n[4 log q∆m,n − ReT (m,n, q)] is asymptotically (real-valued)

normal with zero mean.

The following assumption is a necessary and sufficient condition for γ−1
m,nT (m,n, q) → 0.

Assumption 14 Assumption 13 holds and

m
2β+1−4dρ
2β−4dρ

n
→ 0 .

Note that Assumption 14 is an upper bound on the growth rate of m. If Assumptions 1–9, 12–14
hold, −2d11 − 2d22 > −1, (so that Assumptions 10 and 11 are irrelevant here) and the three
limits in Theorem 5 exist and are not all zero, then γ−1

m,n∆̃m,n is asymptotically complex normal
with zero mean, and 4 log qγ−1

m,n∆m,n is asymptotically (real-valued) normal with zero mean. We
omit the details on the evaluation of the three limits in Theorem 5. The values of these limits
would determine the asymptotic variances of the limiting normal distributions described above.
For the anti-cointegration model with s = 0, a long but straightforward calculation reveals that
under Assumptions 1–9, 12–14 together with the assumption that d1 +d2 < 1/2, the asymptotic
variance for 4 log q γ−1

m,n∆m,n is

(1/2)(2π)2σ2
1σ

2
2(1− 2d3)2σ−4

3 [1 + cosπ(d1 + d2)]
[
q1−2(d1+d2)(1− q2d3−1)2 + 1− q1−2(d1+d2)

]
.

Finally, we comment on the compatibility of the upper bound in Assumption 14 and the lower
bounds in Assumptions 9 and 12, when d11 + d22 < 1/2. We focus on the case β = 2, γ = 2, as
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holds in the anti-cointegration example. Since γ = 2, it is easily shown that Assumption 12 is
always stronger than Assumption 9. Thus, m must satisfy the two requirements

n
−4dρ
1−4dρ

m
→ 0 ,

m
5−4dρ
4−4dρ

n
→ 0 .

If we assume that m = nα where α ∈ (0, 1) then the two requirements become α > −4dρ/(1−4dρ)
and α < (4− 4dρ)/(5− 4dρ). These two requirements can always be simultaneously satisfied for
some choice of α since it is easily shown that for any dρ < 0, −4dρ/(1−4dρ) < (4−4dρ)/(5−4dρ).

4 Simulation results

We now assess the performance of the APE in finite samples through simulation. We will test
the APE for d12 and dρ in two cases:

• Fractionally Integrated Vector Autoregression (FIVAR): A FIV AR(0, (d1, d2)) model with

the innovation variance of the vector autoregression equal to
(

1 0.5
0.5 1

)
.

• Power law coherency: The anti-cointegration model given in Equation (2.11) with d3 =
d2 − b, where b = 0.1 or b = 0.5. In this case, d12 = d2 − b and dρ = 1

2(d2 − d1)− b.

All simulations are based on the algorithm described by Sela and Hurvich [2009]. We allow d1, d2,
and the number of observations to vary. We choose m = ng, where g ∈ {1/6, 1/3, 1/2, 2/3, 4/5}.
In all cases, we use q = 1

2 , since Lobato [1997] showed that this choice worked well for a variety
of values of d1, d2. All results are based on 1000 replications. To facilitate calculations using the
fast Fourier transform, we chose sample sizes to be powers of 2. In particular we used powers
of 7, 9, 11, 13, 15, corresponding to n = 128, n = 512, n = 2048, n = 8192 and n = 32768,
respectively.

4.1 APE for power law in auto-spectrum when d < 0

First, we describe the performance of the APE for a power law in the auto-spectrum when d < 0.
In Figure 3, we plot the estimated values of memory parameters as n grows. Each panel shows
a different choice of m. Because the averaged periodogram estimator for the power law in the
auto-spectrum is consistent for any growth rate of m as long as 1

m + m
n → 0, the APE improves

with the sample size in all panels. The APE is more variable for smaller growth rates, as one
might expect. However, larger growth rates of m can lead to finite-sample bias in the APE. To
see an example of this, we apply the APE to the auto-periodogram of a process that consists
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Figure 3: Estimated power law in the auto-spectrum when the true data-generating process is
a FIVAR process with d1 = d2 = −0.4 and various values of n. In the four panels, m is equal to
n1/3, n1/2, n2/3, n4/5.

Figure 4: Estimated power law in the auto-spectrum when the true data-generating process is
the power law coherency process with d1 = d2 = −0.4 and various values of n. In the four
panels, m is equal to n1/3, n1/2, n2/3, n4/5.
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Figure 5: Estimated power law in the auto-spectrum when the true data-generating process is
an ARFIMA(0,−1.8, 0) process with varying n; m = n2/3 in all cases. The data are not tapered
in the left panel and are tapered in the right panel.

of two components. Figure 4 shows the finite-sample bias that can result when m grows too
quickly.

Now, we consider a case where d < −0.5. In Figure 5, we plot the APE estimates of d
when the true value is -1.8 as n grows. In the left panel, the data have not been tapered, and
APE performs quite badly, appearing to be inconsistent. In the right panel, the data have been
tapered of order 1, and the performance of the APE improves dramatically. This shows the
importance of tapering when the series may be non-invertible.

4.2 Estimating a power law in the cross-spectrum

We now describe the performance of the APE for estimating a power law in the cross-spectral
density. Here, we will focus on the case where d1 = 0.2, d2 = 0, and we use a taper with
s = 1. In the case where we set b = 0.1 in a power law coherency model (which has γ = 2),
dρ = −0.2, d12 = −0.1 and the lower bound on the growth rate required to ensure consistency
is −4dρ

1−4dρ
= 0.8

1.8 = 0.444, i.e., we require m/n0.444 → ∞. When b = 0.5 and dρ = −0.6, so

that d12 = −0.5, and the required growth rate is −4dρ

1−4dρ
= 2.4/3.4 = 0.7058. Figure 6 presents
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Figure 6: Estimated power law in the cross-spectral density, d̂12, using the averaged periodogram
estimator when the true data-generating process has power law coherency, with d1 = 0.2, d2 =
0, n = 32, 768 and varying choices of m. dρ = −0.2 in the left panel; dρ = −0.6 in the right
panel. True values of d12 are −0.1 and −0.5, respectively.

boxplots of d̂12 in the anti-cointegration models when n = 32, 768. Notice that the bias and
variance of the estimators are much smaller for m = n2/3, n4/5 when b = 0.1 and for m = n4/5

when b = 0.5, relative to smaller values of m. This occurs because the growth rates required by
Assumption 12 differ in the two cases. The lower bound on the growth rate of m can also be seen
by contrasting the two boxplots in Figure 7. The left boxplot shows a case in which m grows as
n1/2, which is less than the growth rate required for consistency; the bias and variability of d̂12

do not decrease with n. In contrast, the right boxplot shows that, when m grows more quickly
(in this case, as n4/5), the bias and the variance of the estimator decrease with n. Thus, the
lower bound on the growth rate of m appears to be necessary for consistency.

Figure 8 present boxplots of the estimated values of dρ when n = 32, 768, setting the esti-
mated value to 0 when the d̂12 − 1

2(d̂1 + d̂2) > 0, since dρ cannot be positive. Figure 9 shows
how d̂ρ changes as n increases for different growth rates of m. As before, estimates of dρ based
on m = n1/2 have approximately constant bias and variability as n grows. When m = n4/5,
the variability and bias decrease as n increases, but the estimated values of dρ are biased up-
ward and remain quite variable. This occurs because d̂ρ depends on three different averaged
periodogram estimators. Furthermore, since x1t and x2t contain two components with differ-
ent memory parameters, the estimators of the memory parameters of the auto-spectra may be
particularly badly behaved.
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Figure 7: Estimated power law in the cross-spectrum when the true data-generating process has
power law coherency with d1 = 0.2, d2 = 0, dρ = −0.6, and varying n. m = n1/2 in the left panel
and m = n4/5 in the right panel.

Figure 8: Estimated power law in the coherency using the averaged periodogram estimator when
the true data-generating process has power law coherency with d1 = 0.2, d2 = 0, n = 32, 768 and
varying choices of m. dρ = −0.2 in the left panel; dρ = −0.6 in the right panel.
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Figure 9: Estimated power law in the coherency when the true data-generating process has
power law coherency with d1 = 0.2, d2 = 0, dρ = −0.6, and varying n. m = n1/2 in the left panel
and m = n4/5 in the right panel.
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5 Data analysis: Money supply growth

We examine monthly estimates of money stock from January 1959 to September 20091 (608
observations). We focus on two different supplies of money. M1 consists of easily accessible
money, such as currency and demand deposits, while M2 consists of M1 together with forms of
money that require more time to access, such as savings deposits and money market accounts. In
order to remove the component common to M1 and M2, we focus on describing the relationship
between M1 and M2 less M1. Both series have clear upward trends in their levels; we will work
with the difference in logs, shown in Figure 10. The plot shows some common movements, such
as a period of comovement in the late 1960’s and mid-1970’s. However, the long run movements
are less related, with M1 growing faster in the mid-1980’s and mid-1990’s but M2 less M1
growing faster in other periods. The logarithms of the auto-periodograms (Figure 11) have an
approximately linear relationship with the log frequency near frequency zero, suggesting that
the individual series have long memory; it is unclear from this figure which series has a larger
memory parameter. The GPH estimates suggest the presence of long memory in the individual
series, though the estimates are quite sensitive to the number of frequencies used.

To estimate the coherency, we first smooth the periodogram, using the spgram function
in R [R Development Core Team, 2008] with modified Daniell smoothers of widths (21, 21).
Though the smoothing is likely to be problematic close to the zero frequency because of the
long memory, estimated coherency based on smoothing is consistent at frequencies away from
singularities in the autospectra and cross-spectrum [Hidalgo, 1996]. The coherency of the two
series is not significantly different from zero except at frequencies ranging from approximately
0.01(2π) to approximately 0.09(2π) (periods ranging from just under 1 year to just over 8 years).
The coherency peaks just above 0.35 around frequency 0.06(2π), which corresponds to a period
of just over 16 months. This suggests that only the longer run movements of M1 and M2-M1
(with periods greater than 1 year) are related. However, the coherency decreases toward zero at
the zero frequency, suggesting power law coherency, so that very long-run movements are not
related.

With this evidence for power law coherency, we can apply the averaged periodogram esti-
mator for varying choices of m, holding q fixed at 0.5. The estimated values of the memory
parameters of the individual series are in the range of the GPH estimates and vary less as m
changes. However, the estimated power law in the cross-spectrum is always larger than the mean
of the two auto-memory parameters, which appears to rule out power law coherency. As we saw
in Section 4, identification of power law coherency is quite challenging even when n = 8192; in
this case, n = 608. Thus, it is not clear that we can rule out power law coherency, even though
d̂ρ = 0.

To provide further evidence that the averaged periodogram estimator may not be able to
find evidence of a power law in the coherency in this dataset, we simulate 1000 datasets with

1Source: Federal Reserve, http://www.federalreserve.gov/releases/h6/hist/h6hist1.txt
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Figure 10: Time series of differences in logs of M1 and M2-M1.

m d̂M1 d̂M2−M1 d̂M1,M2−M1

n1/2 = 24 0.347 0.375 0.409
n3/5 = 46 0.326 0.285 0.335
n2/3 = 71 0.335 0.300 0.425
n3/4 = 122 0.206 0.336 0.329
n4/5 = 168 0.269 0.379 0.358

Table 1: APE estimates of dM1, dM2−M1, and dM1,M2−M1 for varying choices of m.
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Figure 11: Log auto-periodograms of the differences in logs of M1 and M2-M1 versus the log
frequency.
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Figure 12: Estimated coherency of the differences in logs of M1 and M2-M1 (smoothed using
spans = (21, 21)).

n = 608, d1 = 0.15, d2 = 0.3, and varying values of dρ, using the anti-cointegration model. For
each dataset, we estimated dρ for the values of m used in Table 1. In Figure 13, we plot the
estimated values of dρ for varying true values of dρ. The estimated values become more spread
out for more negative values of dρ. In many cases with power law coherency, the proportion of
the time that the point estimate is non-zero is under 0.5. In all cases, the estimates are biased
upward, with the bias particularly pronounced for more negative values of dρ. This shows that
the performance of the APE is quite poor in a sample of this size.

This dataset provides graphical evidence based on the smoothed periodogram that power
law coherency may exist. However, the averaged periodogram estimator is not able to identify
power law coherency in a sample of this size, as shown in simulation.

6 Conclusion

In this paper, we have discussed the possibility of a power law in coherency for bivariate long-
memory time series, providing a parametric time-domain example. The average periodogram
estimator provides a consistent estimator for the power law in the coherency, but can be quite
variable in sample sizes considered in practice and requires that a sufficiently large number of
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Figure 13: Estimated values of dρ in simulations for varying values of dρ.
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frequencies be used. We have also proved that the APE can be applied to estimation of the
power law in the autospectra when d < 0, provided that the data are tapered when necessary.
We have applied our estimators to money stock measure data.

We have assumed a bivariate model for notational convenience. However, the multivariate
case can be handled along the same lines. If the observed series {Xt} is q∗ × 1 with q∗ ≤ p
then the Ψ matrices would be q∗ × p. The representation of the cross spectrum fab between
components a and b of {Xt} as a superposition of power law functions would be obtained just
as in Section 2. The estimator of the power law, dab, would proceed by averaging the cross
periodogram between components a and b. The proof of the properties of this estimator would
proceed similarly to that given here for the bivariate case. In particular, no new difficulties
would arise in the proof of Lemma 6 since the model of Chen and Hurvich [2006] is multivariate,
and since the results used from Hurvich et al. [2002] are univariate. We thank an anonymous
referee for motivating this discussion of the multivariate case.

The coherency can provide important insights into the relationships of two or more time
series, which can help to understand the underlying mechanisms that generate them. Power
laws in coherency arise naturally in the context of long-memory time series, and can affect the
behavior of estimators of other quantities. Thus, the possibility of power law coherency should
be considered in the analysis of bivariate or multivariate time series, and the APE provides a
way to estimate the power law in the coherency in some cases.

7 Technical Lemmas

Proof of Lemma 1. By (2.6)− (2.8) and Assumption 5,

f12(λ) = |2 sin(λ/2)|−2d12s(λ; q̃0) + R(λ)

where R(λ) is differentiable on (0, π] and

lim
λ→0+

R(λ)/λ−2d12 = 0.

Define s(λ) = f12(λ)/|λ|−2d12 . Then

s(0) = lim
λ→0+

s(λ) = s(0; q̃0) 6= 0.

Using integration by parts, since 1− 2d12 > 0,

F12(λ) =
∫ λ

0
f12(θ)dθ =

∫ λ

0
s(θ)θ−2d12dθ

=
1

1− 2d12
s(λ)λ1−2d12 − 1

1− 2d12

∫ λ

0
θ1−2d12s′(θ)dθ. (7.1)
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By Assumptions 2, 4 and 5, there exist positive constants C, A and Ξ such that |s′(θ)| ≤ Cθ−1+Ξ

for all θ ∈ (0, A). It follows that for all λ ∈ (0, A),

1
λ1−2d12

∣∣∣∣
∫ λ

0
θ1−2d12s′(θ)dθ

∣∣∣∣ ≤ CλΞ.

This, combined with (7.1) yields

F12(λ) ∼ 1
1− 2d12

s(0)λ1−2d12 , λ → 0+.

The second part of the Lemma follows from Karamata’s theorem, as (2.3) implies that fj(λ) is
regularly varying at zero.

Lemma 6 If fab(λ) satisfies the conditions of Lemma 1, da, db < 1/2 for a, b ∈ {1, 2} and
Assumptions 1-8 hold,

E


2π

n

m∑

j=1

∣∣∣I(λj)−Ψ(λj̃)Iε(λj)Ψ∗(λj̃)
∣∣∣

 = o

(
λ1−daa−dbb

m

)

If we further assume that Assumption 9 holds and a 6= b,
∣∣∣∣∣∣
E


2π

n

m∑

j=1

(
Iab(λj)−Ψa(λj̃)Iε(λj)Ψ∗

b(λj̃)
)



∣∣∣∣∣∣
= o

(
λ1−2dab

m

)

Proof. A proof very similar to that of Lemma 18 of Chen and Hurvich [2006] shows that:

E
(∣∣∣Iab(λj)−Ψa(λj̃)Iε(λj)Ψ∗

b(λj̃)
∣∣∣
)

≤ Cλ−daa−dbb
j j−γ/2

(Their Assumption 2 is similar to our Assumption 6, but uses Ψ†
jk(λ) instead of τjk(λ)eiϕjk(λ).

Because the results are proved for each (j, k) separately, we can allow δjk to vary with j, k when
we apply the univariate results from Hurvich et al. [2002] in the proof of that lemma. Since our
Assumption 2 allows τau(λ) ≡ 0 (hence Ψau(λ) ≡ 0), λ ∈ [0, π] for certain values of u ∈ 1, · · · , p,
we would restrict the double sum in (49) of Chen and Hurvich [2006] to those values of u, v such
that τau(0) > 0 and τbv(0) > 0.)

Then, with C being an arbitrary non-zero constant that may change from one line to the
next, we find the expected modulus of the sum in (3.4):

E


2π

n

m∑

j=1

∣∣∣Iab(λj)−Ψa(λj̃)Iε(λj)Ψ∗
b(λj̃)

∣∣∣

 (7.2)
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≤ C

n

m∑

j=1

λ−daa−dbb
j j−γ/2 = Cn−1+daa+dbb

m∑

j=1

j−daa−dbb−γ/2 (7.3)

Based on the value of −daa − dbb − γ/2, we have three cases:

Case 1: −daa − dbb − γ/2 < −1. In this case,
∑m

j=1 j−daa−dbb−γ/2 = O(1). Because
daa + dbb < 1,

n−1+daa+dbb

m∑

j=1

j−daa−dbb−γ/2 = O
(
n−1+daa+dbb

)

= O
(
λ1−daa−dbb

m mdaa+dbb−1
)

(7.4)

= O
(
λ1−2dab

m n−2dρm2dab−1
)

(7.5)

Since daa + dbb < 1 by stationarity, Equation (7.4) is o
(
λ1−daa−dbb

m

)
. If Assumption 9 holds and

a 6= b, then Equation (7.5) is o
(
λ1−2dab

m

)
.

Case 2: −daa − dbb − γ/2 = −1. Then,
∑m

j=1 j−daa−dbb−γ/2 =
∑m

j=1
1
j = O(log(m)), and we

have:

n−1+daa+dbb

m∑

j=1

j−daa−dbb−γ/2 = O
(
n−1+daa+dbb log(m)

)

= O
(
λ1−daa−dbb

m mdaa+dbb−1 log(m)
)

(7.6)

= O
(
λ1−2dab

m n−2dρm2dab−1 log(m)
)

(7.7)

As before, daa + dbb < 1 by stationarity, so mdaa+dbb−1 log(m) = o(1) and Equation (7.6) is
o
(
λ1−daa−dbb

m

)
. If Assumption 9 holds, then Equation (7.7) is o

(
λ1−2dab

m

)
.

Case 3: −daa − dbb − γ/2 > −1. In this case, we rewrite:

Cn−1+daa+dbb

m∑

j=1

j−daa−dbb−γ/2 = O

(
1

mγ/2
λ1−daa−dbb

m

)
(7.8)

= O

(
λ

2dρ
m

mγ/2
λ1−2dab

m

)
(7.9)

Since m → ∞, (7.8) is o(λ1−daa−dbb
m ). If n

2dρ
2dρ−γ/2

m → 0, then m−γ/2λ
2dρ
m = o(1) and (7.9) is

o(λ1−2dab
m ).
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The next lemma is closely related to Lemma 19 of Chen and Hurvich [2006], generalizing the
result to the case where εt is non-Gaussian. In certain cases, the bound on |E (Sab(λj)Sab(λk))|
could replace −daa−dbb by −2dab; however, this will happen only for values of the fourth cumu-
lants and E

(
Jε,u1(λj)Jε,v2(λj)

)
E

(
Jε,u2(λk)Jε,v1(λk)

)
that preserve the power law coherency

properties.

Lemma 7 Let Iε,u,v(λj) be the (u, v) element of the cross-periodogram of p-variate white noise.
Let λj̃ be the shifted Fourier frequency. Let 1 ≤ j, k ≤ n/2. Define

S(λj) = Ψ(λj̃)Iε(λj)Ψ∗(λj̃)− f(λj)

Let Sab(λj) be the (a, b) element of S(λj). Then under Assumptions 1-5 and Assumption 7,

∣∣∣E
(
Sab(λj)Sab(λk)

)∣∣∣ ≤




C|λj̃λk̃|−(daa+dbb) + O
(

1
n |λj̃λk̃|−(daa+dbb)

)
|j − k| ≤ s

O
(

1
n |λj̃λk̃|−(daa+dbb)

)
|j − k| > s

Proof. Following Chen and Hurvich [2006], we write:

E
(
Sab(λj)Sab(λk)

)
=

p∑

u1=1

p∑

u2=1

p∑

v1=1

p∑

v2=1

Ψau1(λj̃)Ψau2(λk̃) Ψbv1(λj̃)Ψbv2(λk̃)

×E
[
(Iε,u1v1(λj)− σu1v1)

(
Iε,u2v2(λk)− σu2v2

)]
(7.10)

and

E
(
(Iε,u1v1(λj)− σu1v1)

(
Iε,u2v2(λk)− σu2v2

))
= cum

(
Jε,u1(λj), Jε,u2(λk), Jε,v1(λj), Jε,v2(λk)

)

+E (Jε,u1(λj)Jε,v2(λk))E
(
Jε,u2(λj)Jε,v1(λk)

)

+E
(
Jε,u1(λj)Jε,u2(λk)

)
E

(
Jε,v1(λj)Jε,v2(λk)

)
.

Note that∣∣∣E (Jε,u1(λj)Jε,v2(λk))E
(
Jε,u2(λj)Jε,v1(λk)

)
+ E

(
Jε,u1(λj)Jε,u2(λk)

)
E

(
Jε,v1(λj)Jε,v2(λk)

)∣∣∣

= Cχ(|j − k| ≤ s) .

Next, we compute the cumulant:

cum
(
Jε,u1(λj), Jε,u2(λk), Jε,v1(λj), Jε,v2(λk)

)

= cum

(
1√

2πnas

n∑

t=1

hs
t εu1,te

itλj ,
1√

2πnas

n∑

t=1

hs
t εu2,te

−itλk ,
1√

2πnas

n∑

t=1

hs
t εv1,te

−itλj ,
1√

2πnas

n∑

t=1

hs
t εv2,te

itλk

)

=
1

(2πas)2n2
cum(εu1,1, εu2,1, εv1,1, εv2,1)

n∑

t=1

|hs
t |4 = O

(
1
n

)
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by Assumption 1.

Substituting these results into Equation (7.10), we find that:

∣∣∣E
(
Sab(λj)Sab(λk)

)∣∣∣ = O

((
χ(|j − k| ≤ s) +

1
n

) p∑

u1=1

p∑

u2=1

p∑

v1=1

p∑

v2=1

∣∣∣Ψau1(λj̃)Ψau2(λk̃) Ψbv1(λj̃)Ψbv2(λk̃)
∣∣∣
)

= O

((
χ(|j − k| ≤ s) +

1
n

)
|λj̃λk̃|−(daa+dbb)

)

Lemma 8 Let S(λj) = Ψ(λj̃)Iε(λj)Ψ∗(λj̃)− f(λj). Under Assumptions 1–5, 7–8,

E


4π2

n2

m∑

j=1

m∑

k=1

Sab(λj)Sab(λk)


 = o

(
λ2−2daa−2dbb

m

)
.

If a 6= b under the assumptions above together with Assumptions 10, 11, 12,

E


4π2

n2

m∑

j=1

m∑

k=1

Sab(λj)Sab(λk)


 = o

(
λ2−4dab

m

)
.

Proof. Applying Lemma 7, the expected squared modulus of the sum in (3.5) is:

E


4π2

n2

m∑

j=1

m∑

k=1

Sab(λj)Sab(λk)


 ≤ 4π2

n2

m∑

j=1

m∑

k=1

∣∣∣E
(
Sab(λj)Sab(λk)

)∣∣∣

= O

(
1
n3

m∑

j=1

m∑

k=1

λ−daa−dbb

j̃
λ−daa−dbb

k̃
(7.11)

+
1
n2

m∑

j=1

m∑

k=1

|λj̃λk̃|−daa−dbbχ(|j − k| ≤ s)
)

. (7.12)

We first consider (7.11). Since daa + dbb < 1,

1
n3

m∑

j=1

m∑

k=1

λ−daa−dbb

j̃
λ−daa−dbb

k̃
=

1
n


 1

n

m∑

j=1

λ−daa−dbb

j̃




2

= O

(
1
n

λ2−2daa−2dbb
m

)
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which is o(λ2−2daa−2dbb
m ) under Assumption 8, and is o(λ2−4dab

m ) under Assumption 12 since

1 +
1

4dρ
<

−4dρ

1− 4dρ
.

Next, we consider (7.12),

1
n2

m∑

j=1

m∑

k=1

|λj̃λk̃|−daa−dbbχ(|j − k| ≤ s) = O


 1

n2

m∑

j=1

λ−2daa−2dbb

j̃




= O


n−2+2daa+2dbb

m∑

j=1

j−2daa−2dbb


 .

As in Lemma 6, there are three cases, now based on the value of −2daa − 2dbb.

Case 1: −2daa − 2dbb < −1. In this case,
∑m

j=1 j−2daa−2dbb = O(1) as m →∞. Thus,

n−2+2daa+2dbb

m∑

j=1

j−2daa−2dbb = O
(
n−2+2daa+2dbb

)

= O
(
λ2−2daa−2dbb

m m2daa+2dbb−2
)

(7.13)

= O
(
λ2−4dab

m n−4dρm4dab−2
)

. (7.14)

Under Assumption 8, the expression in Equation (7.13) is o(λ2−2daa−2dbb
m ) because daa + dbb < 1

and m →∞. The expression in Equation (7.14) is o(λ2−2dab
m ) under Assumption 10.

Case 2: −2daa − 2dbb = −1. In this case,
∑m

j=1 j−2daa−2dbb = O(log(m)) as m →∞. Then,

n−2+2daa+2dbb

m∑

j=1

j−2daa−2dbb = O
(
n−2+2daa+2dbb log(m)

)

= O
(
λ2−2daa−2dbb

m m2daa+2dbb−2 log(m)
)

(7.15)

= O
(
λ2−4dab

m n−4dρm4dab−2 log(m)
)

. (7.16)

Under Assumption 8, the expression in Equation (7.15) is o(λ2−2daa−2dbb
m ) because daa + dbb < 1

and m →∞. The expression in Equation (7.16) is o(λ2−2dab
m ) under Assumption 11.

Case 3: −2daa − 2dbb > −1. Then, we have

n−2+2daa+2dbb

m∑

j=1

j−2daa−2dbb = O

(
1
n

λ1−2daa−2dbb
m

)

= O

(
1
m

λ2−2daa−2dbb
m

)
. (7.17)
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which is o(λ2−2daa−2dbb
m ) under Assumption 8, and is o(λ2−4dab

m ) under Assumption 12.

Lemma 9 Under Assumptions 1-5,

2π

n

m∑

j=1

fab(λj)− Fab(λm) = o(Fab(λm)).

Proof. We consider in detail the case a = 1, b = 2, as the other cases can be proved similarly.
Taylor’s Theorem yields for λ ∈ [λj−1, λj),

f12(λ) = f12(λj) + (λ− λj)f ′12(ξj)

where ξj is between λ and λj , and therefore in [λj−1, λj). We have

2π

n

m∑

j=1

f12(λj)− F12(λm) =
m∑

j=1

∫ λj

λj−1

[f12(λj)− f12(λ)]dλ

=
m∑

j=1

∫ λj

λj−1

(λj − λ)f ′12(ξj)dλ =
m∑

j=1

f ′12(ξj)

(
2π

n

2πj

n
− λ2

j

2
+

λ2
j−1

2

)

=
2π2

n2

m∑

j=1

f ′12(ξj).

As in the proof of Lemma 1, we can write f12(λ) = |λ|−2d12s(λ) where limλ→0+ s(λ) = s(0; q0) 6=
0, and there exist constants C, A and Ξ such that |s′(θ)| ≤ Cθ−1+Ξ for all θ ∈ (0, A). Differen-
tiability implies that s is continuous, therefore bounded, on (0, A). Since m/n → 0 we have for
sufficiently large m that

∣∣∣∣∣∣
2π

n

m∑

j=1

f12(λj)− F12(λm)

∣∣∣∣∣∣
≤ 2π2

n2

m∑

j=1

|f ′12(ξj)|

≤ 2π2

n2

m∑

j=1

|ξj |−2d12C|ξj |−1+Ξ + Const
2π2

n2

m∑

j=1

|ξj |−2d12−1

≤ Const
1
n2

m∑

j=1

|ξj |−2d12−1

If −2d12−1 ≥ 0 (that is, d12 ≤ −1/2), then |ξj |−2d12−1 ≤ |λj |−2d12−1 and so it suffices to show
that 1

n2

∑m
j=1 |λj |−2d12−1 = o(F12(λm)). It suffices to show this even in the case −2d12 − 1 < 0,
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since n−1f12(λ1) = o(F12(λm)) and
∑m

j=2 |λj−1|−2d12−1 ≤ ∑m
j=1 |λj |−2d12−1. Therefore, we define

A(m,n) =
1
n2

m∑

j=1

(j/n)−2d12−1.

Case I: −2d12 − 1 < −1.

Then |A(m,n)| ≤ Const n−2(1/n)−2d12−1 = O(n−1+2d12), so that |A(m,n)/F12(λm)| =
O(m2d12−1) → 0, since m →∞ and 2d12 − 1 < 0.

Case II: −2d12 − 1 > −1.

Then |A(m,n)| ≤ Const n−2n1+2d12m−2d12 = O(n2d12−1m−2d12), so that |A(m,n)/F12(λm)| =
O(m−1) → 0.

Case III: −2d12 − 1 = −1.

Here, we have d12 = 0 and hence f12(λ) = s(λ). A similar argument to that presented at the
beginning of this proof yields

∣∣∣∣∣∣
2π

n

m∑

j=1

f12(λj)− F12(λm)

∣∣∣∣∣∣
≤ 2π2

n2

m∑

j=1

|f ′12(λj)| ≤ Const
1
n2

m∑

j=1

|λj |−1+Ξ

= O(n−2n1−ΞmΞ) = O(n−1−ΞmΞ)
= o(F12(λm)).

8 Additional Proofs

Proof of Lemma 4: We have S(m, n, q) =
∑m

j=1 αjS12(λj) where

αj =

{
2π

nG(λm) − 2π
nG(qλm) if j ≤ bqmc

2π
nG(λm) if j > bqmc

Thus,

cum[S(m,n, q), . . . , S(m,n, q)︸ ︷︷ ︸
r terms

] =
m∑

j1=1

· · ·
m∑

jr=1

αj1 · · ·αjrcum[S12(λj1), · · · , S12(λjr)] .
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Now,

cum[S12(λj1), · · · , S12(λjr)] =
p∑

u1=1

· · ·
p∑

ur=1

p∑

v1=1

· · ·
p∑

vr=1

Ψ1u1(λj̃1
)Ψ2v1(λj̃1

) · · ·Ψ1ur(λj̃r
)Ψ2vr(λj̃r

)

· cum[Iε,u1v1(λj1), · · · , Iε,urvr(λjr)] .

Consider partitions of the table

Jε,u1(λj1) Jε,v1(λj1)
Jε,u2(λj2) Jε,v2(λj2)

...
...

Jε,ur(λjr) Jε,vr(λjr)

Following Brillinger [1981] (p. 20) we say that two elements of the partition hook if they both have
an entry on the same row of the table. Moreover, two elements of the partition communicate if
they are linked by a sequence of pairs that hook. Finally, the partition is indecomposable if all
elements communicate. Now, Brillinger [1981] Theorem 2.3.2 (p. 21) implies that if we denote
the entries of the above table by Xij then

cum[Iε,u1v1(λj1), · · · , Iε,urvr(λjr)] =
∑

ν

cum(Xij ; i, j ∈ ν1) · · · cum(Xij ; i, j ∈ νp) (8.1)

where the sum is over all indecomposable partitions ν = ν1 ∪ · · · ∪ νp of the table. Due to
Gaussianity, the only partitions yielding a nonzero contribution to (8.1) are those whose elements
all have exactly two entries. So we must have p = r and none of the elements ν1, · · · νr of the
partition can be a row of the table, on account of indecomposability. Arguing as in the proof
of Lemma 7, and in view of (8.1), we see that cum[Iε,u1v1(λj1), · · · , Iε,urvr(λjr)] is bounded
by a constant (not depending on r, n, or on j1, · · · , jr) and this cumulant is exactly zero if
maxK,L∈{1,··· ,r} |jK − jL| > s. Thus,

|cum[S(m,n, q), . . . , S(m,n, q)︸ ︷︷ ︸
r terms

]| ≤ C·
m∑

j1=1

· · ·
m∑

jr=1

|λj1 · · ·λjr |−d11−d22 |αj1 · · ·αjr |χ( max
K,L∈{1,··· ,r}

|jK−jL| ≤ s)

Since |αj | ≤ Cn−1λ2d12−1
m = Cm2d12−1n−2d12 we have

|cum[S(m,n, q), . . . , S(m,n, q)︸ ︷︷ ︸
r terms

]| ≤ C(m2d12−1n−2d12)r
m∑

j=1

λ
−r(d11+d22)
j

≤ C(m2d12−1n−2d12)rnr(d11+d22) ·
{

1 if − r(d11 + d22) < −1
m−r(d11+d22)+1 if − r(d11 + d22) ≥ −1
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We also have

|cum(S(m,n, q)/γm,n, . . . , S(m,n, q)/γm,n︸ ︷︷ ︸
r terms

)| = γ−r
m,n|cum[S(m,n, q), . . . , S(m,n, q)︸ ︷︷ ︸

r terms

]|

Case I: −r(d11 + d22) < −1. Then

|cum(S(m,n, q)/γm,n, . . . , S(m,n, q)/γm,n︸ ︷︷ ︸
r terms

)| ≤ C(m2dρ−1/2n−2dρ)−r(m2d12−1n−2d12)rnr(d11+d22)

= C(md11+d22−1/2)r

which tends to zero since one of the assumptions of the lemma is that d11 + d22 < 1/2.

Case II: −r(d11 + d22) ≥ −1. Then

|cum(S(m,n, q)/γm,n, . . . , S(m,n, q)/γm,n︸ ︷︷ ︸
r terms

)| ≤ C(md11+d22−1/2)rm−r(d11+d22)+1

= m−r/2+1 → 0

since r ≥ 3. ¤
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