232 research outputs found

    Contribution of dissolved organic nitrogen from rivers to estuarine eutrophication

    Full text link

    The regional and global significance of nitrogen removal in lakes and reservoirs

    Get PDF
    Author Posting. © The Author(s), 2008. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Biogeochemistry 93 (2009): 143-157, doi:10.1007/s10533-008-9272-x.Human activities have greatly increased the transport of biologically available N through watersheds to potentially sensitive coastal ecosystems. Lentic water bodies (lakes and reservoirs) have the potential to act as important sinks for this reactive N as it is transported across the landscape because they offer ideal conditions for N burial in sediments or permanent loss via denitrification. However, the patterns and controls on lentic N removal have not been explored in great detail at large regional to global scales. In this paper we describe, evaluate, and apply a new, spatially explicit, annual-scale, global model of lentic N removal called NiRReLa (Nitrogen Retention in Reservoirs and Lakes). The NiRReLa model incorporates small lakes and reservoirs than have been included in previous global analyses, and also allows for separate treatment and analysis of reservoirs and natural lakes. Model runs for the mid-1990s indicate that lentic systems are indeed important sinks for N and are conservatively estimated to remove 19.7 Tg N yr-1 from watersheds globally. Small lakes (< 50 km2) were critical in the analysis, retaining almost half (9.3 Tg N yr-1) of the global total. In model runs, capacity of lakes and reservoirs to remove watershed N varied substantially (0-100%) both as a function of climate and the density of lentic systems. Although reservoirs occupy just 6% of the global lentic surface area, we estimate they retain approximately 33% of the total N removed by lentic systems, due to a combination of higher drainage ratios (catchment surface area : lake or reservoir surface area), higher apparent settling velocities for N, and greater N loading rates in reservoirs than in lakes. Finally, a sensitivity analysis of NiRReLa suggests that, on-average, N removal within lentic systems will respond more strongly to changes in land use and N loading than to changes in climate at the global scale.The NSF26 Research Coordination Network on denitrification for support for collaboration (award number DEB0443439 to S.P. Seitzinger and E.A. Davidson). This project was also supported by grants to J.A. Harrison from California Sea Grant (award number RSF8) and from the U.S. Geological Survey 104b program and R. Maranger (FQRNT Strategic Professor)

    A Synthesis of Global Urbanization Projections

    Get PDF
    This chapter reviews recent literature on global projections of future urbanization, covering the population, economic and physical extent perspectives. We report on several recent findings based on studies and reports on global patterns of urbanization. Specifically, we review new literature that makes projections about the spatial pattern, rate, and magnitude of urbanization change in the next 30–50 years. While projections should be viewed and utilized with caution, the chapter synthesis reports on several major findings that will have significant socioeconomic and environmental impacts including the following: By 2030, world urban population is expected to increase from the current 3.4 billion to almost 5 billion; Urban areas dominate the global economy – urban economies currently generate more than 90 % of global Gross Value Added; From 2000 to 2030, the percent increase in global urban land cover will be over 200 % whereas the global urban population will only grow by a little over 70 %. Our synthesis of recent projections suggest that between 50%–60% of the total urban land in existence in 2030 will be built in the first three decades of the 21st century. Challenges and limitations of urban dynamic projections are discussed, as well as possible innovative applications and potential pathways towards sustainable urban futures

    Stream denitrification across biomes and its response to anthropogenic nitrate loading

    Get PDF
    Author Posting. © The Author(s), 2008. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature 452 (2008): 202-205, doi:10.1038/nature06686.Worldwide, anthropogenic addition of bioavailable nitrogen (N) to the biosphere is increasing and terrestrial ecosystems are becoming increasingly N saturated, causing more bioavailable N to enter groundwater and surface waters. Large-scale N budgets show that an average of about 20-25% of the N added to the biosphere is exported from rivers to the ocean or inland basins, indicating substantial sinks for N must exist in the landscape. Streams and rivers may be important sinks for bioavailable N owing to their hydrologic connections with terrestrial systems, high rates of biological activity, and streambed sediment environments that favor microbial denitrification. Here, using data from 15N tracer experiments replicated across 72 streams and 8 regions representing several biomes, we show that total biotic uptake and denitrification of nitrate increase with stream nitrate concentration, but that the efficiency of biotic uptake and denitrification declines as concentration increases, reducing the proportion of instream nitrate that is removed from transport. Total uptake of nitrate was related to ecosystem photosynthesis and denitrification was related to ecosystem respiration. Additionally, we use a stream network model to demonstrate that excess nitrate in streams elicits a disproportionate increase in the fraction of nitrate that is exported to receiving waters and reduces the relative role of small versus large streams as nitrate sinks.Funding for this research was provided by the National Science Foundation

    Enhanced hyporheic exchange flow around woody debris does not increase nitrate reduction in a sandy streambed

    Get PDF
    Anthropogenic nitrogen pollution is a critical problem in freshwaters. Although riverbeds are known to attenuate nitrate, it is not known if large woody debris (LWD) can increase this ecosystem service through enhanced hyporheic exchange and streambed residence time. Over a year, we monitored the surface water and pore water chemistry at 200 points along a ~50m reach of a lowland sandy stream with three natural LWD structures. We directly injected 15N-nitrate at 108 locations within the top 1.5m of the streambed to quantify in situ denitrification, anammox and dissimilatory nitrate reduction to ammonia, which, on average, contributed 85%, 10% and 5% of total nitrate reduction, respectively. Total nitrate reducing activity ranged from 0-16µM h-1 and was highest in the top 30cm of the stream bed. Depth, ambient nitrate and water residence time explained 44% of the observed variation in nitrate reduction; fastest rates were associated with slow flow and shallow depths. In autumn, when the river was in spate, nitrate reduction (in situ and laboratory measures) was enhanced around the LWD compared with non-woody areas, but this was not seen in the spring and summer. Overall, there was no significant effect of LWD on nitrate reduction rates in surrounding streambed sediments, but higher pore water nitrate concentrations and shorter residence times, close to LWD, indicated enhanced delivery of surface water into the streambed under high flow. When hyporheic exchange is too strong, overall nitrate reduction is inhibited due to short flow-paths and associated high oxygen concentrations

    Warming Can Boost Denitrification Disproportionately Due to Altered Oxygen Dynamics

    Get PDF
    Background: Global warming and the alteration of the global nitrogen cycle are major anthropogenic threats to the environment. Denitrification, the biological conversion of nitrate to gaseous nitrogen, removes a substantial fraction of the nitrogen from aquatic ecosystems, and can therefore help to reduce eutrophication effects. However, potential responses of denitrification to warming are poorly understood. Although several studies have reported increased denitrification rates with rising temperature, the impact of temperature on denitrification seems to vary widely between systems. Methodology/Principal Findings: We explored the effects of warming on denitrification rates using microcosm experiments, field measurements and a simple model approach. Our results suggest that a three degree temperature rise will double denitrification rates. By performing experiments at fixed oxygen concentrations as well as with oxygen concentrations varying freely with temperature, we demonstrate that this strong temperature dependence of denitrification can be explained by a systematic decrease of oxygen concentrations with rising temperature. Warming decreases oxygen concentrations due to reduced solubility, and more importantly, because respiration rates rise more steeply with temperature than photosynthesis. Conclusions/Significance: Our results show that denitrification rates in aquatic ecosystems are strongly temperature dependent, and that this is amplified by the temperature dependencies of photosynthesis and respiration. Our result

    Sedimentary Environment Influences the Effect of an Infaunal Suspension Feeding Bivalve on Estuarine Ecosystem Function

    Get PDF
    The suspension feeding bivalve Austrovenus stutchburyi is a key species on intertidal sandflats in New Zealand, affecting the appearance and functioning of these systems, but is susceptible to several environmental stressors including sedimentation. Previous studies into the effect of this species on ecosystem function have been restricted in space and time, limiting our ability to infer the effect of habitat change on functioning. We examined the effect of Austrovenus on benthic primary production and nutrient dynamics at two sites, one sandy, the other composed of muddy-sand to determine whether sedimentary environment alters this key species' role. At each site we established large (16 m2) plots of two types, Austrovenus addition and removal. In winter and summer we deployed light and dark benthic chambers to quantify oxygen and nutrient fluxes and measured sediment denitrification enzyme activity to assess denitrification potential. Rates of gross primary production (GPP) and ammonium uptake were significantly increased when Austrovenus was added, relative to removed, at the sandy site (GPP, 1.5 times greater in winter and summer; ammonium uptake, 8 times greater in summer; 3-factor analysis of variance (ANOVA), p<0.05). Denitrification potential was also elevated in Austrovenus addition plots at the sandy site in summer (by 1.6 times, p<0.1). In contrast, there was no effect of Austrovenus treatment on any of these variables at the muddy-sand site, and overall rates tended to be lower at the muddy-sand site, relative to the sandy site (e.g. GPP was 2.1 to 3.4 times lower in winter and summer, respectively, p<0.001). Our results suggest that the positive effects of Austrovenus on system productivity and denitrification potential is limited at a muddy-sand site compared to a sandy site, and reveal the importance of considering sedimentary environment when examining the effect of key species on ecosystem function

    Genomic resolution of linkages in carbon, nitrogen, and sulfur cycling among widespread estuary sediment bacteria

    Get PDF
    Abstract Background Estuaries are among the most productive habitats on the planet. Bacteria in estuary sediments control the turnover of organic carbon and the cycling of nitrogen and sulfur. These communities are complex and primarily made up of uncultured lineages, thus little is known about how ecological and metabolic processes are partitioned in sediments. Results De novo assembly and binning resulted in the reconstruction of 82 bacterial genomes from different redox regimes of estuary sediments. These genomes belong to 23 bacterial groups, including uncultured candidate phyla (for example, KSB1, TA06, and KD3-62) and three newly described phyla (White Oak River (WOR)-1, WOR-2, and WOR-3). The uncultured phyla are generally most abundant in the sulfate-methane transition (SMTZ) and methane-rich zones, and genomic data predict that they mediate essential biogeochemical processes of the estuarine environment, including organic carbon degradation and fermentation. Among the most abundant organisms in the sulfate-rich layer are novel Gammaproteobacteria that have genes for the oxidation of sulfur and the reduction of nitrate and nitrite. Interestingly, the terminal steps of denitrification (NO3 to N2O and then N2O to N2) are present in distinct bacterial populations. Conclusions This dataset extends our knowledge of the metabolic potential of several uncultured phyla. Within the sediments, there is redundancy in the genomic potential in different lineages, often distinct phyla, for essential biogeochemical processes. We were able to chart the flow of carbon and nutrients through the multiple geochemical layers of bacterial processing and reveal potential ecological interactions within the communities.http://deepblue.lib.umich.edu/bitstream/2027.42/111044/1/40168_2015_Article_77.pd

    Nitrate Reduction Functional Genes and Nitrate Reduction Potentials Persist in Deeper Estuarine Sediments. Why?

    Get PDF
    Denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are processes occurring simultaneously under oxygen-limited or anaerobic conditions, where both compete for nitrate and organic carbon. Despite their ecological importance, there has been little investigation of how denitrification and DNRA potentials and related functional genes vary vertically with sediment depth. Nitrate reduction potentials measured in sediment depth profiles along the Colne estuary were in the upper range of nitrate reduction rates reported from other sediments and showed the existence of strong decreasing trends both with increasing depth and along the estuary. Denitrification potential decreased along the estuary, decreasing more rapidly with depth towards the estuary mouth. In contrast, DNRA potential increased along the estuary. Significant decreases in copy numbers of 16S rRNA and nitrate reducing genes were observed along the estuary and from surface to deeper sediments. Both metabolic potentials and functional genes persisted at sediment depths where porewater nitrate was absent. Transport of nitrate by bioturbation, based on macrofauna distributions, could only account for the upper 10 cm depth of sediment. A several fold higher combined freeze-lysable KCl-extractable nitrate pool compared to porewater nitrate was detected. We hypothesised that his could be attributed to intracellular nitrate pools from nitrate accumulating microorganisms like Thioploca or Beggiatoa. However, pyrosequencing analysis did not detect any such organisms, leaving other bacteria, microbenthic algae, or foraminiferans which have also been shown to accumulate nitrate, as possible candidates. The importance and bioavailability of a KCl-extractable nitrate sediment pool remains to be tested. The significant variation in the vertical pattern and abundance of the various nitrate reducing genes phylotypes reasonably suggests differences in their activity throughout the sediment column. This raises interesting questions as to what the alternative metabolic roles for the various nitrate reductases could be, analogous to the alternative metabolic roles found for nitrite reductases
    • …
    corecore