7 research outputs found

    The conditioning regime in industrial drying of Scots pine sawn timber studied by X-ray computed tomography : a case-study

    No full text
    Industrial drying of sawn timber is a process driven by a difference in moisture content (MC) between the core and the surface as moisture moves from the wet inner region towards the drier surface. After drying, the timber surface is always drier than its core, and stresses have developed within the wood volume. If the timber is to be further processed, these stresses and the moisture gradient need to be reduced to avoid unwanted distortion, i.e. the timber needs to be conditioned. Conditioning is usually accomplished by exposing the timber to a hot and humid climate after the drying regime. The conditioning regime is essential for timber quality, and it is energy and time consuming; therefore of interest for optimisation. This research was a case study where for the first time the MC during conditioning was studied in an X-ray computed tomography (CT) scanner. The aim was to test a previously developed algorithm and investigate the influence of MC and heartwood-sapwood proportion on the effectivity of the moisture equalisation in 30 mm thick Scots pine boards. The MC was estimated from CT data acquired during the drying and conditioning of the boards in a lab-scale kiln adapted to a medical CT scanner. Results show that the algorithm can provide relevant data of internal MC distribution of sawn timber at the pixel level. Furthermore, for the drying schedules studied, the conditioning at low MC (8%) does not need to be longer than 3 h, while higher MC (18%) requires a longer conditioning
    corecore