2,846 research outputs found
Point force manipulation and activated dynamics of polymers adsorbed on structured substrates
We study the activated motion of adsorbed polymers which are driven over a
structured substrate by a localized point force.Our theory applies to
experiments with single polymers using, for example, tips of scanning force
microscopes to drag the polymer.We consider both flexible and semiflexible
polymers,and the lateral surface structure is represented by double-well or
periodic potentials. The dynamics is governed by kink-like excitations for
which we calculate shapes, energies, and critical point forces. Thermally
activated motion proceeds by the nucleation of a kink-antikink pair at the
point where the force is applied and subsequent diffusive separation of kink
and antikink. In the stationary state of the driven polymer, the collective
kink dynamics can be described by an one-dimensional symmetric simple exclusion
process.Comment: 7 pages, 2 Figure
Query processing of spatial objects: Complexity versus Redundancy
The management of complex spatial objects in applications, such as geography and cartography,
imposes stringent new requirements on spatial database systems, in particular on efficient
query processing. As shown before, the performance of spatial query processing can be improved
by decomposing complex spatial objects into simple components. Up to now, only decomposition
techniques generating a linear number of very simple components, e.g. triangles or trapezoids, have
been considered. In this paper, we will investigate the natural trade-off between the complexity of
the components and the redundancy, i.e. the number of components, with respect to its effect on
efficient query processing. In particular, we present two new decomposition methods generating
a better balance between the complexity and the number of components than previously known
techniques. We compare these new decomposition methods to the traditional undecomposed representation
as well as to the well-known decomposition into convex polygons with respect to their
performance in spatial query processing. This comparison points out that for a wide range of query
selectivity the new decomposition techniques clearly outperform both the undecomposed representation
and the convex decomposition method. More important than the absolute gain in performance
by a factor of up to an order of magnitude is the robust performance of our new decomposition
techniques over the whole range of query selectivity
ft Value of O14 and the Universality of the Fermi Interaction
The conserved-vector-current theory of the strangeness-conserving weak decays predicts that GV, the vector coupling constant in nuclear beta decay, should be equal to GÎŒ, the coupling constant in the muon decay. To make possible a more precise comparison of GV and GÎŒ, the ft value of O14 has been remeasured. The endpoint energy of the positron decay has been determined by measuring the Q values of the reactions C12(He3, n)O14 and C12(He3, p)N14* (2.311-MeV state), using the same techniques and equipment where possible in order to minimize the uncertainty in the difference of the Q values. The results of these measurements are Qn=-1148.8±0.6 keV and Qp=2468.4±1.0 keV, which yield Emax(ÎČ+)=1812.6±1.4 keV, all energies relative to the Li7(p, n)Be7 threshold assumed as 1880.7±0.4 keV. The half-life of O14 has also been remeasured as 71.00±0.13 sec, which implies a partial half-life of 71.43±0.15 sec for the transition to the 2.311-MeV state of N14. Averaged with the recent half-life measurement of Hendrie and Gerhart, we obtain an ft value of 3075±10 sec for the O14 decay, after correcting for nuclear form factors, electron screening, and K-capture competition. With the radiative corrections of Kinoshita and Sirlin, the value obtained for GV is (1.4025±0.0022)Ă10^-49 erg-cm^3, where the quoted error is experimental in origin. This is to be compared with the value computed from recent muon decay measurements, GÎŒ=(1.4312±0.0011)Ă10^-49 erg-cm^3, which is (2.0±0.2)% larger. As there appear to be several possible theoretical explanations for this small discrepancy, the present results are consistent with the conserved-vector-current hypothesis
Adaptive Path Planning for Depth Constrained Bathymetric Mapping with an Autonomous Surface Vessel
This paper describes the design, implementation and testing of a suite of
algorithms to enable depth constrained autonomous bathymetric (underwater
topography) mapping by an Autonomous Surface Vessel (ASV). Given a target depth
and a bounding polygon, the ASV will find and follow the intersection of the
bounding polygon and the depth contour as modeled online with a Gaussian
Process (GP). This intersection, once mapped, will then be used as a boundary
within which a path will be planned for coverage to build a map of the
Bathymetry. Methods for sequential updates to GP's are described allowing
online fitting, prediction and hyper-parameter optimisation on a small embedded
PC. New algorithms are introduced for the partitioning of convex polygons to
allow efficient path planning for coverage. These algorithms are tested both in
simulation and in the field with a small twin hull differential thrust vessel
built for the task.Comment: 21 pages, 9 Figures, 1 Table. Submitted to The Journal of Field
Robotic
Glassy freezing of orbital dynamics in FeCr2S4 and FeSc2S4
We report on a thorough dielectric investigation of the glass-like freezing
of the orbital reorientation-dynamics, recently found for the crystalline
sulpho-spinels FeCr2S4 and FeSc2S4. As the orbital reorientations are coupled
to a rearrangement of the surrounding ionic lattice via the Jahn-Teller effect,
the freezing of the orbital moments is revealed by a relaxational behaviour of
the complex dielectric permittivity. Additional conductivity (both dc and ac)
and contact contributions showing up in the spectra are taken into account by
an equivalent circuit description. The orbital relaxation dynamics continuously
slows down over six decades in time, before at the lowest temperatures the
glass transition becomes suppressed by quantum tunnelling.Comment: J. Non-Cryst. Solids, in press. 6 pages, 4 figure
Efficient Processing of Spatial Joins Using R-Trees
Abstract: In this paper, we show that spatial joins are very suitable to be processed on a parallel hardware platform. The parallel system is equipped with a so-called shared virtual memory which is well-suited for the design and implementation of parallel spatial join algorithms. We start with an algorithm that consists of three phases: task creation, task assignment and parallel task execu-tion. In order to reduce CPU- and I/O-cost, the three phases are processed in a fashion that pre-serves spatial locality. Dynamic load balancing is achieved by splitting tasks into smaller ones and reassigning some of the smaller tasks to idle processors. In an experimental performance compar-ison, we identify the advantages and disadvantages of several variants of our algorithm. The most efficient one shows an almost optimal speed-up under the assumption that the number of disks is sufficiently large. Topics: spatial database systems, parallel database systems
Electron localization by a magnetic vortex
We study the problem of an electron in two dimensions in the presence of a
magnetic vortex with a step-like profile. Dependending on the values of the
effective mass and gyromagnetic factor of the electron, it may be trapped by
the vortex. The bound state spectrum is obtained numerically, and some limiting
cases are treated analytically.Comment: 8 pages, latex, 4 figure
Materials with Colossal Dielectric Constant: Do They Exist?
Experimental evidence is provided that colossal dielectric constants, epsilon
>= 1000, sometimes reported to exist in a broad temperature range, can often be
explained by Maxwell-Wagner type contributions of depletion layers at the
interface between sample and contacts, or at grain boundaries. We demonstrate
this on a variety of different materials. We speculate that the largest
intrinsic dielectric constant observed so far in non-ferroelectric materials is
of order 100.Comment: 3 figure
Diffusion controlled initial recombination
This work addresses nucleation rates in systems with strong initial
recombination. Initial (or `geminate') recombination is a process where a
dissociated structure (anion, vortex, kink etc.) recombines with its twin
brother (cation, anti-vortex, anti-kink) generated in the same nucleation
event. Initial recombination is important if there is an asymptotically
vanishing interaction force instead of a generic saddle-type activation
barrier. At low temperatures, initial recombination strongly dominates
homogeneous recombination. In a first part, we discuss the effect in one-,
two-, and three-dimensional diffusion controlled systems with spherical
symmetry. Since there is no well-defined saddle, we introduce a threshold which
is to some extent arbitrary but which is restricted by physically reasonable
conditions. We show that the dependence of the nucleation rate on the specific
choice of this threshold is strongest for one-dimensional systems and decreases
in higher dimensions. We discuss also the influence of a weak driving force and
show that the transport current is directly determined by the imbalance of the
activation rate in the direction of the field and the rate against this
direction. In a second part, we apply the results to the overdamped sine-Gordon
system at equilibrium. It turns out that diffusive initial recombination is the
essential mechanism which governs the equilibrium kink nucleation rate. We
emphasize analogies between the single particle problem with initial
recombination and the multi-dimensional kink-antikink nucleation problem.Comment: LaTeX, 11 pages, 1 ps-figures Extended versio
Statistical Mechanics of Kinks in (1+1)-Dimensions
We investigate the thermal equilibrium properties of kinks in a classical
field theory in dimensions. The distribution function, kink
density, and correlation function are determined from large scale simulations.
A dilute gas description of kinks is shown to be valid below a characteristic
temperature. A double Gaussian approximation to evaluate the eigenvalues of the
transfer operator enables us to extend the theoretical analysis to higher
temperatures where the dilute gas approximation fails. This approach accurately
predicts the temperature at which the kink description breaks down.Comment: 8 pages, Latex (4 figures available on request), LA-UR-92-399
- âŠ