48 research outputs found

    Mixed-strain housing for female C57BL/6, DBA/2, and BALB/c mice: validating a split-plot design that promotes refinement and reduction

    Get PDF
    Abstract Background Inefficient experimental designs are common in animal-based biomedical research, wasting resources and potentially leading to unreplicable results. Here we illustrate the intrinsic statistical power of split-plot designs, wherein three or more sub-units (e.g. individual subjects) differing in a variable of interest (e.g. genotype) share an experimental unit (e.g. a cage or litter) to which a treatment is applied (e.g. a drug, diet, or cage manipulation). We also empirically validate one example of such a design, mixing different mouse strains -- C57BL/6, DBA/2, and BALB/c -- within cages varying in degree of enrichment. As well as boosting statistical power, no other manipulations are needed for individual identification if co-housed strains are differentially pigmented, so also sparing mice from stressful marking procedures. Methods The validation involved housing 240 females from weaning to 5 months of age in single- or mixed- strain trios, in cages allocated to enriched or standard treatments. Mice were screened for a range of 26 commonly-measured behavioural, physiological and haematological variables. Results Living in mixed-strain trios did not compromise mouse welfare (assessed via corticosterone metabolite output, stereotypic behaviour, signs of aggression, and other variables). It also did not alter the direction or magnitude of any strain- or enrichment-typical difference across the 26 measured variables, or increase variance in the data: indeed variance was significantly decreased by mixed- strain housing. Furthermore, using Monte Carlo simulations to quantify the statistical power benefits of this approach over a conventional design demonstrated that for our effect sizes, the split- plot design would require significantly fewer mice (under half in most cases) to achieve a power of 80 %. Conclusions Mixed-strain housing allows several strains to be tested at once, and potentially refines traditional marking practices for research mice. Furthermore, it dramatically illustrates the enhanced statistical power of split-plot designs, allowing many fewer animals to be used. More powerful designs can also increase the chances of replicable findings, and increase the ability of small-scale studies to yield significant results. Using mixed-strain housing for female C57BL/6, DBA/2 and BALB/c mice is therefore an effective, efficient way to promote both refinement and the reduction of animal-use in research

    The Calm Mouse: An Animal Model of Stress Reduction

    No full text
    Chronic stress is associated with negative health outcomes and is linked with neuroendocrine changes, deleterious effects on innate and adaptive immunity, and central nervous system neuropathology. Although stress management is commonly advocated clinically, there is insufficient mechanistic understanding of how decreasing stress affects disease pathogenesis. Therefore, we have developed a “calm mouse model” with caging enhancements designed to reduce murine stress. Male BALB/c mice were divided into four groups: control (Cntl), standard caging; calm (Calm), large caging to reduce animal density, a cardboard nest box for shelter, paper nesting material to promote innate nesting behavior, and a polycarbonate tube to mimic tunneling; control exercise (Cntl Ex), standard caging with a running wheel, known to reduce stress; and calm exercise (Calm Ex), calm caging with a running wheel. Calm, Cntl Ex and Calm Ex animals exhibited significantly less corticosterone production than Cntl animals. We also observed changes in spleen mass, and in vitro splenocyte studies demonstrated that Calm Ex animals had innate and adaptive immune responses that were more sensitive to acute handling stress than those in Cntl. Calm animals gained greater body mass than Cntl, although they had similar food intake, and we also observed changes in body composition, using magnetic resonance imaging. Together, our results suggest that the Calm mouse model represents a promising approach to studying the biological effects of stress reduction in the context of health and in conjunction with existing disease models
    corecore