24 research outputs found

    Early termination of ISRCTN45828668, a phase 1/2 prospective, randomized study of Sulfasalazine for the treatment of progressing malignant gliomas in adults

    Get PDF
    BACKGROUND: Sulfasalazine, a NF-kappaB and x(c)-cystine/glutamate antiport inhibitor, has demonstrated a strong antitumoral potential in preclinical models of malignant gliomas. As it presents an excellent safety profile, we initiated a phase 1/2 clinical study of this anti-inflammatory drug for the treatment of recurrent WHO grade 3 and 4 astrocytic gliomas in adults. METHODS: 10 patients with advanced recurrent anaplastic astrocytoma (n = 2) or glioblastoma (n = 8) aged 32-62 years were recruited prior to the planned interim analysis of the study. Subjects were randomly assigned to daily doses of 1.5, 3, 4.5, or 6 grams of oral sulfasalazine, and treated until clinical or radiological evidence of disease progression or the development of serious or unbearable side effects. Primary endpoints were the evaluation of toxicities according to the CTCAE v.3.0, and the observation of radiological tumor responses based on MacDonald criteria. RESULTS: No clinical response was observed. One tumor remained stable for 2 months with sulfasalazine treatment, at the lowest daily dose of the drug. The median progression-free survival was 32 days. Side effects were common, as all patients developed grade 1-3 adverse events (mean: 7.2/patient), four patients developed grade 4 toxicity. Two patients died while on treatment or shortly after its discontinuation. CONCLUSION: Although the proper influence of sulfasalazine treatment on patient outcome was difficult to ascertain in these debilitated patients with a large tumor burden (median KPS = 50), ISRCTN45828668 was terminated after its interim analysis. This study urges to exert cautiousness in future trials of Sulfasalazine for the treatment of malignant gliomas. TRIAL REGISTRATION: Current Controlled Trials ISRCTN45828668

    Assessing the need for nuclear cardiology and other advanced cardiac imaging modalities in the developing world.

    No full text
    Background: In 2005, 80% of cardiovascular disease (CVD) deaths occurred in low- to middle-income countries (i.e., developing nations). Cardiovascular imaging, such as myocardial perfusion SPECT, is one method that may be applied to detect and foster improved detection of at-risk patients. This document will review the availability and utilization for nuclear cardiology procedures worldwide and propose strategies to devise regional centers of excellence to achieve quality imaging around the world. Methods: As a means to establish the current state of nuclear cardiology, International Atomic Energy Agency member and non-member states were queried as to annual utilization of nuclear cardiology procedures. Other sources for imaging statistics included data from medical societies (American Society of Nuclear Cardiology, European Society of Cardiology, and the European Association of Nuclear Medicine) and nuclear cardiology working groups within several nations. Utilization was calculated by dividing annual procedural volume by 2007 population statistics (/100,000) and categorized as high (>1,000/100,000), moderate-high (250-999/100,000), moderate (100-249/100,000), low-moderate (50-99/100,000) and low (<50/100,000). Results: High nuclear cardiology utilization was reported in the United States, Canada, and Israel. Most Western European countries, Australia, and Japan reported moderate-high utilization. With the exception of Argentina, Brazil, Colombia and Uruguay, South America had low usage. This was also noted across Eastern Europe, Russia, and Asia. Utilization patterns generally mirrored each country's gross domestic product. However, nuclear cardiology utilization was higher for developing countries neighboring moderate-high "user" countries (e.g., Algeria and Egypt); perhaps the result of accessible high-quality training programs. Conclusions: Worldwide utilization patterns for nuclear cardiology vary substantially and may be influenced by physician access to training and education programs. Development of regional training centers of excellence can guide utilization of nuclear cardiology through the application of guideline- and appropriateness-driven testing, training, continuing education, and quality assurance programs aiding developing nations to confront the epidemics of CV

    PM20D1 is a quantitative trait locus associated with Alzheimer’s disease

    No full text
    The chances to develop Alzheimer’s disease (AD) result from a combination of genetic and non-genetic risk factors1, the latter likely being mediated by epigenetic mechanisms2. In the past, genome-wide association studies (GWAS) have identified an important number of risk loci associated with AD pathology3, but a causal relationship remains difficult to establish. In contrast, locus-specific or epigenome-wide association studies (EWAS) have revealed site-specific epigenetic alterations, which provide mechanistic insights for a particular risk gene but often lack the statistical power of GWAS4. Here, combining both approaches, we report a previously unidentified association of the peptidase M20-domain-containing protein 1 (PM20D1) with AD. We find that PM20D1 is a methylation and expression quantitative trait locus coupled to an AD-risk associated haplotype, which displays enhancer-like characteristics and contacts the PM20D1 promoter via a haplotype-dependent, CCCTC-binding-factor-mediated chromatin loop. Furthermore, PM20D1 is increased following AD-related neurotoxic insults at symptomatic stages in the APP/PS1 mouse model of AD and in human patients with AD who are carriers of the non-risk haplotype. In line, genetically increasing or decreasing the expression of PM20D1 reduces and aggravates AD-related pathologies, respectively. These findings suggest that in a particular genetic background, PM20D1 contributes to neuroprotection against AD

    Nuclear cardiology practice and associated radiation doses in Europe: results of the IAEA Nuclear Cardiology Protocols Study (INCAPS) for the 27 European countries

    Get PDF
    Purpose: Nuclear cardiology is widely used to diagnose coronary artery disease and to guide patient management, but data on current practices, radiation dose-related best practices, and radiation doses are scarce. To address these issues, the IAEA conducted a worldwide study of nuclear cardiology practice. We present the European subanalysis. Methods: In March 2013, the IAEA invited laboratories across the world to document all SPECT and PET studies performed in one week. The data included age, gender, weight, radiopharmaceuticals, injected activities, camera type, positioning, hardware and software. Radiation effective dose was calculated for each patient. A quality score was defined for each laboratory as the number followed of eight predefined best practices with a bearing on radiation exposure (range of quality score 0&nbsp;–&nbsp;8). The participating European countries were assigned to regions (North, East, South, and West). Comparisons were performed between the four European regions and between Europe and the rest-of-the-world (RoW). Results: Data on 2,381 European patients undergoing nuclear cardiology procedures in 102 laboratories in 27 countries were collected. A cardiac SPECT study was performed in 97.9&nbsp;% of the patients, and a PET study in 2.1&nbsp;%. The average effective dose of SPECT was 8.0 ± 3.4&nbsp;mSv (RoW 11.4 ± 4.3&nbsp;mSv; P &lt; 0.001) and of PET was 2.6 ± 1.5&nbsp;mSv (RoW 3.8 ± 2.5&nbsp;mSv; P &lt; 0.001). The mean effective doses of SPECT and PET differed between European regions (P &lt; 0.001 and P = 0.002, respectively). The mean quality score was 6.2 ± 1.2, which was higher than the RoW score (5.0 ± 1.1; P &lt; 0.001). Adherence to best practices did not differ significantly among the European regions (range 6 to 6.4; P = 0.73). Of the best practices, stress-only imaging and weight-adjusted dosing were the least commonly used. Conclusion: In Europe, the mean effective dose from nuclear cardiology is lower and the average quality score is higher than in the RoW. There is regional variation in effective dose in relation to the best practice quality score. A possible reason for the differences between Europe and the RoW could be the safety culture fostered by actions under the Euratom directives and the implementation of diagnostic reference levels. Stress-only imaging and weight-adjusted activity might be targets for optimization of European nuclear cardiology practice

    Comparison of Radiation Doses and Best-Practice Use for Myocardial Perfusion Imaging in US and Non-US Laboratories: Findings From the IAEA (International Atomic Energy Agency) Nuclear Cardiology Protocols Study

    Get PDF
    not availabl
    corecore