15 research outputs found

    The impact of co-infections on fish: a review

    Full text link
    International audienceAbstractCo-infections are very common in nature and occur when hosts are infected by two or more different pathogens either by simultaneous or secondary infections so that two or more infectious agents are active together in the same host. Co-infections have a fundamental effect and can alter the course and the severity of different fish diseases. However, co-infection effect has still received limited scrutiny in aquatic animals like fish and available data on this subject is still scarce. The susceptibility of fish to different pathogens could be changed during mixed infections causing the appearance of sudden fish outbreaks. In this review, we focus on the synergistic and antagonistic interactions occurring during co-infections by homologous or heterologous pathogens. We present a concise summary about the present knowledge regarding co-infections in fish. More research is needed to better understand the immune response of fish during mixed infections as these could have an important impact on the development of new strategies for disease control programs and vaccination in fish

    Transcriptome analysis of rainbow trout in response to non-virion (NV) protein of viral haemorrhagic septicaemia virus (VHSV)

    No full text
    The non-virion (NV) protein of viral haemorrhagic septicaemia virus (VHSV), an economically important fish novirhabdovirus, has been implicated in the interference of some host innate mechanisms (i.e. apoptosis) in vitro. This work aimed to characterise the immune-related transcriptome changes in rainbow trout induced by NV protein that have not yet been established in vivo. For that purpose, immune-targeted microarrays were used to analyse the transcriptomes from head kidney and spleen of rainbow trout (Oncorhynchus mykiss) after injection of recombinant NV (rNV). Results showed the extensive downregulation (and in some cases upregulation) of many innate and adaptive immune response genes not related previously to VHSV infection. The newly identified genes belonged to VHSV-induced genes (vigs), tumour necrosis factors, Toll-like receptors, antigen processing and presentation, immune co-stimulatory molecules, interleukins, macrophage chemotaxis, transcription factors, etc. Classification of differentially downregulated genes into rainbow trout immune pathways identified stat1 and jun/atf1 transcription factor genes as the most representative of the multipath gene targets of rNV. Altogether, these results contribute to define the role and effects of NV in trout by orchestrating an immunosuppression of the innate immune responses for favouring viral replication upon VHSV infection. Finally, these transcriptome results open up the possibility to find out new strategies against VHSV and better understand the interrelationships between some immune pathways in trout. © 2015, Springer-Verlag Berlin Heidelberg
    corecore