23 research outputs found

    Accreting Black Holes

    Full text link
    This chapter provides a general overview of the theory and observations of black holes in the Universe and on their interpretation. We briefly review the black hole classes, accretion disk models, spectral state classification, the AGN classification, and the leading techniques for measuring black hole spins. We also introduce quasi-periodic oscillations, the shadow of black holes, and the observations and the theoretical models of jets.Comment: 41 pages, 18 figures. To appear in "Tutorial Guide to X-ray and Gamma-ray Astronomy: Data Reduction and Analysis" (Ed. C. Bambi, Springer Singapore, 2020). v3: fixed some typos and updated some parts. arXiv admin note: substantial text overlap with arXiv:1711.1025

    ReishiMax, mushroom based dietary supplement, inhibits adipocyte differentiation, stimulates glucose uptake and activates AMPK

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Obesity is a health hazard which is closely associated with various complications including insulin resistance, hypertension, dyslipidemia, atherosclerosis, type 2 diabetes and cancer. In spite of numerous preclinical and clinical interventions, the prevalence of obesity and its related disorders are on the rise demanding an urgent need for exploring novel therapeutic agents that can regulate adipogenesis. In the present study, we evaluated whether a dietary supplement ReishiMax (RM), containing triterpenes and polysaccharides extracted from medicinal mushroom <it>Ganoderma lucidum</it>, affects adipocyte differentiation and glucose uptake in 3T3-L1 cells.</p> <p>Methods</p> <p>3T3-L1 pre-adipocytes were differentiated into adipocytes and treated with RM (0-300 μg/ml). Adipocyte differentiation/lipid uptake was evaluated by oil red O staining and triglyceride and glycerol concentrations were determined. Gene expression was evaluated by semi-quantitative RT-PCR and Western blot analysis. Glucose uptake was determined with [<sup>3</sup>H]-glucose.</p> <p>Results</p> <p>RM inhibited adipocyte differentiation through the suppresion of expression of adipogenic transcription factors peroxisome proliferator-activated receptor-γ (PPAR-γ), sterol regulatory element binding element protein-1c (SREBP-1c) and CCAAT/enhancer binding protein-α (C/EBP-α). RM also suppressed expression of enzymes and proteins responsible for lipid synthesis, transport and storage: fatty acid synthase (FAS), acyl-CoA synthetase-1 (ACS1), fatty acid binding protein-4 (FABP4), fatty acid transport protein-1 (FATP1) and perilipin. RM induced AMP-activated protein kinase (AMPK) and increased glucose uptake by adipocytes.</p> <p>Conclusion</p> <p>Our study suggests that RM can control adipocyte differentiation and glucose uptake. The health benefits of ReishiMax warrant further clinical studies.</p

    Black hole spin: theory and observation

    Full text link
    In the standard paradigm, astrophysical black holes can be described solely by their mass and angular momentum - commonly referred to as `spin' - resulting from the process of their birth and subsequent growth via accretion. Whilst the mass has a standard Newtonian interpretation, the spin does not, with the effect of non-zero spin leaving an indelible imprint on the space-time closest to the black hole. As a consequence of relativistic frame-dragging, particle orbits are affected both in terms of stability and precession, which impacts on the emission characteristics of accreting black holes both stellar mass in black hole binaries (BHBs) and supermassive in active galactic nuclei (AGN). Over the last 30 years, techniques have been developed that take into account these changes to estimate the spin which can then be used to understand the birth and growth of black holes and potentially the powering of powerful jets. In this chapter we provide a broad overview of both the theoretical effects of spin, the means by which it can be estimated and the results of ongoing campaigns.Comment: 55 pages, 5 figures. Published in: "Astrophysics of Black Holes - From fundamental aspects to latest developments", Ed. Cosimo Bambi, Springer: Astrophysics and Space Science Library. Additional corrections mad

    Solvent and structural effects in tautomeric 3-cyano-4-(substituted phenyl)-6-phenyl-2(1H)-pyridones: experimental and quantum chemical study

    No full text
    The tautomeric equilibria between 2-pyridone and 2-hydroxypyridine forms of methoxy, chloro, and nitro derivatives of 3-cyano-4-(2-, 3-, and 4-substituted phenyl)-6-phenyl-2(1H)-pyridones were evaluated from UV/Vis spectral data. Linear solvation energy relationships of Kamlet-Taft and Catalan-rationalized solvent have influence on tautomeric equilibria. Transmission of substituent effect was analyzed by the Hammett equation. Quantum chemical calculations were performed by density functional theory (B3LYP). The experimental data were interpreted with the aid of time-dependent density functional method. Electron density distribution was analyzed by Bader's analysis. It was found that substituents of different electronic properties change the extent of conjugation, and affect intramolecular charge transfer character. Theoretical calculations and experimental results gave insight into the influence of the molecular conformation on the transmission of substituent effects, as well as on contribution of different solvent-solute interactions

    Exome sequencing identifies pathogenic variants of VPS13B in a patient with familial 16p11.2 duplication

    No full text
    BACKGROUND: The recurrent microduplication of 16p11.2 (dup16p11.2) is associated with a broad spectrum of neurodevelopmental disorders (NDD) confounded by incomplete penetrance and variable expressivity. This inter- and intra-familial clinical variability highlights the importance of personalized genetic counselling in individuals at-risk. CASE PRESENTATION: In this study, we performed whole exome sequencing (WES) to look for other genomic alterations that could explain the clinical variability in a family with a boy presenting with NDD who inherited the dup16p11.2 from his apparently healthy mother. We identified novel splicing variants of VPS13B (8q22.2) in the proband with compound heterozygous inheritance. Two VPS13B mutations abolished the canonical splice sites resulting in low RNA expression in transformed lymphoblasts of the proband. VPS13B mutation causes Cohen syndrome (CS) consistent with the proband’s phenotype (intellectual disability (ID), microcephaly, facial gestalt, retinal dystrophy, joint hypermobility and neutropenia). The new diagnosis of CS has important health implication for the proband, provides the opportunity for more meaningful and accurate genetic counselling for the family; and underscores the importance of longitudinally following patients for evolving phenotypic features. CONCLUSIONS: This is the first report of a co-occurrence of pathogenic variants with familial dup16p11.2. Our finding suggests that the variable expressivity among carriers of rare putatively pathogenic CNVs such as dup16p11.2 warrants further study by WES and individualized genetic counselling of families with such CNVs. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12881-016-0340-0) contains supplementary material, which is available to authorized users

    Innate and Introduced Resistance Traits in Genetically Modified Aspen Trees and Their Effect on Leaf Beetle Feeding

    Get PDF
    Genetic modifications of trees may provide many benefits, e. g. increase production, and mitigate climate change and herbivore impacts on forests. However, genetic modifications sometimes result in unintended effects on innate traits involved in plant-herbivore interactions. The importance of intentional changes in plant defence relative to unintentional changes and the natural variation among clones used in forestry has not been evaluated. By a combination of biochemical measurements and bioassays we investigated if insect feeding on GM aspens is more affected by intentional (induction Bt toxins) than of unintentional, non-target changes or clonal differences in innate plant defence. We used two hybrid wildtype clones (Populus tremula x P. tremuloides and Populus tremula x P. alba) of aspen that have been genetically modified for 1) insect resistance (two Bt lines) or 2) reduced lignin properties (two lines COMT and CAD), respectively. Our measurements of biochemical properties suggest that unintended changes by GM modifications (occurring due to events in the transformation process) in innate plant defence (phenolic compounds) were generally smaller but fundamentally different than differences seen among different wildtype clones (e. g. quantitative and qualitative, respectively). However, neither clonal differences between the two wildtype clones nor unintended changes in phytochemistry influenced consumption by the leaf beetle (Phratora vitellinae). By contrast, Bt induction had a strong direct intended effect as well as a post experiment effect on leaf beetle consumption. The latter suggested lasting reduction of beetle fitness following Bt exposure that is likely due to intestinal damage suffered by the initial Bt exposure. We conclude that Bt induction clearly have intended effects on a target species. Furthermore, the effect of unintended changes in innate plant defence traits, when they occur, are context dependent and have in comparison to Bt induction probably less pronounced effect on targeted herbivores
    corecore