68 research outputs found

    Development of a blood oxygenation phantom for photoacoustic tomography combined with online pO2 detection and flow spectrometry

    Get PDF
    Photoacoustic tomography (PAT) is intrinsically sensitive to blood oxygen saturation (sO2) in vivo. However, making accurate sO2 measurements without knowledge of tissue- and instrumentation-related correction factors is extremely challenging. We have developed a low-cost flow phantom to facilitate validation of PAT systems. The phantom is composed of a flow circuit of tubing partially embedded within a tissue-mimicking material, with independent sensors providing online monitoring of the optical absorption spectrum and partial pressure of oxygen in the tube. We first test the flow phantom using two small molecule dyes that are frequently used for photoacoustic imaging: methylene blue and indocyanine green. We then demonstrate the potential of the phantom for evaluating sO2 using chemical oxygenation and deoxygenation of blood in the circuit. Using this dynamic assessment of the photoacoustic sO2 measurement in phantoms in relation to a ground truth, we explore the influence of multispectral processing and spectral coloring on accurate assessment of sO2. Future studies could exploit this low-cost dynamic flow phantom to validate fluence correction algorithms and explore additional blood parameters such as pH and also absorptive and other properties of different fluids

    Coherent Imaging through Multicore Fibres with Applications in Endoscopy

    Get PDF
    Imaging through optical fibres has recently emerged as a promising method of micro-scale optical imaging within a hair-thin form factor. This has significant applications in endoscopy and may enable minimally invasive imaging deep within live tissue for improved diagnosis of disease. Multi-mode fibres (MMF) are the most common choice because of their high resolution but multicore fibres (MCF) offer a number of advantages such as widespread clinical use, ability to form approximate images without correction and an inherently sparse transmission matrix (TM) enabling simple and fast characterisation. We present a novel experimental investigation into properties of MCF important for imaging, specifically: a new method to upsample and downsample measured TMs with minimal information loss, the first experimental measurement of MCF spatial eigenmodes, a novel statistical treatment of behaviour under bending based on a wireless fading model, and an experimental observation of TM drift due to self-heating effects and discussion of how to compensate this. We next present practical techniques for imaging through MCFs, including alignment, how to parallelise TM characterisation measurements to improve speed and how to use non-interferometric phase and polarisation recovery for improved stability. Finally, we present two recent applications of MCF imaging: polarimetric imaging using a robust Bayesian inference approach, and entropic imaging for imaging early-stage tumours

    Single-Step Fabrication of Multispectral Filter Arrays Using Grayscale Lithography and Metal-Insulator-Metal Geometry

    Get PDF
    © 2018 OSA. Metal-insulator-metal geometries can provide optical transmission filtering, with peak wavelength dependent on insulator thickness. Using grayscale electron beam lithography to control insulator thickness, we fabricate multispectral filter arrays, whereby dose determines wavelength

    Wide-field phase imaging for the endoscopic detection of dysplasia and early-stage esophageal cancer

    Get PDF
    © 2018 SPIE. Esophageal cancer has a 5-year survival rate below 20%, but can be curatively resected if it is detected early. At present, poor contrast for early lesions in white light imaging leads to a high miss rate in standard-of-care endoscopic surveillance. Early lesions in the esophagus, referred to as dysplasia, are characterized by an abundance of abnormal cells with enlarged nuclei. This tissue has a different refractive index profile to healthy tissue, which results in different light scattering properties and provides a source of endogenous contrast that can be exploited for advanced endoscopic imaging. For example, point measurements of such contrast can be made with scattering spectroscopy, while optical coherence tomography generates volumetric data. However, both require specialist interpretation for diagnostic decision making. We propose combining wide-field phase imaging with existing white light endoscopy in order to provide enhanced contrast for dysplasia and early-stage cancer in an image format that is familiar to endoscopists. Wide-field phase imaging in endoscopy can be achieved using coherent illumination combined with phase retrieval algorithms. Here, we present the design and simulation of a benchtop phase imaging system that is compatible with capsule endoscopy. We have undertaken preliminary optical modelling of the phase imaging setup, including aberration correction simulations and an investigation into distinguishing between different tissue phantom scattering coefficients. As our approach is based on phase retrieval rather than interferometry, it is feasible to realize a device with low-cost components for future clinical implementation

    Evaluation of illumination system uniformity for wide-field biomedical hyperspectral imaging

    Get PDF
    Hyperspectral imaging (HSI) systems collect both spatial (morphological) and spectral (chemical) information from a sample. HSI can provide sensitive analysis for biological and medical applications, for example, simultaneously measuring reflectance and fluorescence properties of a tissue, which together with structural information could improve early cancer detection and tumour characterisation. Illumination uniformity is a critical pre-condition for quantitative data extraction from an HSI system. Non-uniformity can cause glare, specular reflection and unwanted shading, which negatively impact statistical analysis procedures used to extract abundance of different chemical species. Here, we model and evaluate several illumination systems frequently used in wide-field biomedical imaging to test their potential for HSI. We use the software LightTools and FRED. The analysed systems include: a fibre ring light; a light emitting diode (LED) ring; and a diffuse scattering dome. Each system is characterised for spectral, spatial, and angular uniformity, as well as transfer efficiency. Furthermore, an approach to measure uniformity using the Kullback-Leibler divergence (KLD) is introduced. The KLD is generalisable to arbitrary illumination shapes, making it an attractive approach for characterising illumination distributions. Although the systems are quite comparable in their spatial and spectral uniformity, the most uniform angular distribution is achieved using a diffuse scattering dome, yielding a contrast of 0.503 and average deviation of 0.303 over a ±60° field of view with a 3.9% model error in the angular domain. Our results suggest that conventional illumination sources can be applied in HSI, but in the case of low light levels, bespoke illumination sources may offer improved performance.TWS is funded by the Winston Churchill Foundation of the United States. ASL is funded by the EPSRC, the George and Lillian Schiff Foundation and the Foundation Blanceflor. SEB is funded by CRUK (C14303/A17197, C47594/A16267 and C47594/A21102) and the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement number FP7-PEOPLE-2013-CIG- 630729. We also acknowledge support from a University of Cambridge MRC Confidence in Concept Award

    Evaluation of precision in optoacoustic tomography for preclinical imaging in living subjects.

    Get PDF
    Optoacoustic Tomography (OT) is now widely used in preclinical imaging, however, precision (repeatability and reproducibility) of OT has yet to be determined. METHODS: We used a commercial small animal OT system. Measurements in stable phantoms were used to independently assess the impact of system variables on precision (using coefficient of variation, COV), including acquisition wavelength, rotational position, frame averaging. Variables due to animal handling and physiology, such as anatomical placement and anesthesia conditions were then assessed in healthy nude mice using the left kidney and spleen as reference organs. Temporal variation was assessed by repeated measurements over hours and days both in phantoms and in vivo\textit{in vivo}. Sensitivity to small molecule dyes was determined in phantoms and in vivo\textit{in vivo}; precision was assessed in vivo\textit{in vivo} using IRDye800CW. RESULTS: OT COV in a stable phantom was less than 2% across all wavelengths over 30 days. The factors with greatest impact on the signal repeatability in phantoms were rotational position and user experience, both of which still resulted in a COV of less than 4%. Anatomical ROI size showed the highest variation at 12% and 18% COV in the kidney and spleen respectively, however, functional SO₂ measurements based on a standard operating procedure showed exceptional reproducibility of <4% COV. COV for repeated injections of IRDye800CW was 6.6%. Sources of variability for in vivo\textit{in vivo} data included respiration rate, user experience and animal placement. CONCLUSION: Data acquired with our small animal OT system was highly repeatable and reproducible across subjects and over time. Therefore, longitudinal OT studies may be performed with high confidence when our standard operating procedure is followed.This work was funded by: the EPSRC-CRUK Cancer Imaging Centre in Cambridge and Manchester (C197/A16465); CRUK (C14303/A17197, C47594/A16267); EU-FP7-agreement FP7-PEOPLE-2013-CIG-630729; and the University of Cambridge EPSRC Impact Acceleration Account

    Photoacoustic imaging using genetically encoded reporters: a review

    Get PDF
    Genetically encoded contrast in photoacoustic imaging (PAI) is complementary to the intrinsic contrast provided by endogenous absorbing chromophores such as hemoglobin. The use of reporter genes expressing absorbing proteins opens the possibility of visualizing dynamic cellular and molecular processes. This is an enticing prospect but brings with it challenges and limitations associated with generating and detecting different types of reporters. The purpose of this review is to compare existing PAI reporters and signal detection strategies, thereby offering a practical guide, particularly for the nonbiologist, to choosing the most appropriate reporter for maximum sensitivity in the biological and technological system of interest.J.B. and S.E.B. are supported by the EPSRCCRUK Cancer Imaging Centre in Cambridge and Manchester (No. C197/A16465); CRUK (Nos. C14303/A17197 and C47594/A16267); and the European Union’s Seventh Framework Programme (No. FP7/2007-2013) under Grant Agreement No. FP7-PEOPLE-2013-CIG-630729. J.Y. is partly supported by Duke MEDx Basic Research Grant. J.L. acknowledges the support of ERC Starting Grant No. 281356
    • …
    corecore