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Abstract—Imaging through optical fibres has recently emerged
as a promising method of micro-scale optical imaging within
a hair-thin form factor. This has significant applications in
endoscopy and may enable minimally invasive imaging deep
within live tissue for improved diagnosis of disease. Multi-mode
fibres (MMF) are the most common choice because of their high
resolution but multicore fibres (MCF) offer a number of advan-
tages such as widespread clinical use, ability to form approximate
images without correction and an inherently sparse transmission
matrix (TM) enabling simple and fast characterisation. We
present a novel experimental investigation into properties of MCF
important for imaging, specifically: a new method to upsample
and downsample measured TMs with minimal information loss,
the first experimental measurement of MCF spatial eigenmodes,
a novel statistical treatment of behaviour under bending based
on a wireless fading model, and an experimental observation
of TM drift due to self-heating effects and discussion of how
to compensate this. We next present practical techniques for
imaging through MCFs, including alignment, how to parallelise
TM characterisation measurements to improve speed and how
to use non-interferometric phase and polarisation recovery for
improved stability. Finally, we present two recent applications
of MCF imaging: polarimetric imaging using a robust Bayesian
inference approach, and entropic imaging for imaging early-stage
tumours.

Index Terms—optical fibre, medical imaging, endoscopy, quan-
titative phase imaging

I. INTRODUCTION

OVER the past decade, optical fibre imaging has de-
veloped to the point where it now enables microscale

optical imaging in hard-to-reach environments, such as fluo-
rescence imaging of neuronal activity in live animal brains
[1], [2], [3]. Many different types of optical fibre imaging
have been demonstrated including confocal [4], two-photon
[5], [6], brightfield, darkfield and fluorescence [7], quantitative
phase and polarimetric [8], [9], speckle [10] and structured
illumination [11]. The key technical advance that has made
this possible is the ability to characterise the complex but
deterministic linear function that describes how light propa-
gates down the fibre, which when discretised is termed the
transmission matrix (TM) [12].

The majority of these methods use multimode fibre (MMF)
[13], [14], [15], [16] with a circularly symmetric graded-
or step-index refractive index profile. The main alternative
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to MMF is multicore fibre (MCF) (or imaging fibre bun-
dle), which comprises up to 100,000 light-guiding elements
(termed cores or fibrelets) fused together into a single solid
‘super’ fibre. The positions and sizes of the cores is typically
randomised so as to minimise core-to-core coupling while
maximising core density [17]. They therefore lack any strong
symmetry despite being quasi-periodic in appearance.

MCFs with single-moded cores have a lower mode density
(and hence imaging resolution) than the equivalent size MMFs
[18], but many commerical MCFs have closely spaced cores
(e.g. <4µm [19]) and support multimodal propagation within
cores [20], closing this gap at the expense of increased core-
to-core coupling [21]. The light-confining properties of MCF
mean it has a sparse TM (see Sections III-D, IV-B and [8],
[9]) enabling approximate amplitude images to be formed
through it with no compensation, particularly at shorter visible
wavelengths where core-to-core coupling is less. For this
reason MCF is already widely used in commercial medical
endoscopes [22], which has the advantage of lowering barriers
to clinical approval for new devices.

Though MCF allows approximate uncorrected amplitude
imaging, it introduces significant distortion in phase and po-
larisation with coherent light [23], [8]. This can be minimised
using bespoke MCF designs [24], [25] but these require large
core-to-core spacing and hence have very low mode-density.
While suitable for scanning confocal imaging, this results
in poor resolution for wide-field imaging. For phase and
polarisation control it is therefore necessary to measure the
MCF TM. However, the sparse nature of MCF, even with
relatively large core-to-core coupling enables parallelised TM
characterisation measurements (see Section IV-B and [8]).
Further, the ability to form approximate amplitude images
without correction and the lack of radial symmetry make
alignment significantly easier (see Section IV-A).

Given these advantages of MCF, they remain a popular
choice for imaging both in clinical settings [22] and in research
(see [18] for a review of endoscopic imaging with MCF). In
this paper we first present empirically derived properties of
MCFs important for coherent imaging, namely: choice of rep-
resentation basis, including a novel method of performing up-
and down-sampling of measured TMs and, for the first time,
experimental measurement of eigenmodes; a novel statistical
treatment of the effects of bending on the TM; and the effect
of time-dependent self-heating on the TM. Next, we present
important practical strategies that enable imaging through
MCF, specifically: dual-polarisation alignment, parallelisation
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of measurements for increased TM characterisation speed, and
use of non-interferometric phase and polarisation reconstruc-
tion for improved stability. Finally, we discuss two novel
practical applications of MCF fibres: polarimetric imaging
via a robust Bayesian inference approach, and phase entropy
imaging.

II. EXPERIMENTAL SET-UP

Figure 1 shows the experimental set-up used to produce data
here. The dual-polarisation design has been presented previ-
ously [8], [26], though other dual-polarisation designs are pos-
sible [27], [15]. Notably, the imaging is non-interferometric,
which has experimental advantages (discussed in Section
IV-C). The wavelength chosen is 852nm, which falls within
the ‘optical window’ [28] where tissue fluorescence mini-
mal. Light is therefore predominantly elastically scattered,
enabling accurate imaging of structural features. The laser
diode (DBR852S, Thorlabs) has a coherence length of ∼1m
and power output of 35 mW . The 2m long MCF (Fujikura
FIGH-06-350G) has 6000 cores, core diameter ∼2.9 µm, core
spacing 4.4 µm, and outer diameter 350 ± 20 µm. In order
to reduce computational load and experimental time, only
around 75% of the available facet area is used and this is
sampled with a period of approximately double the expected
core spacing (see Figure 3a). The TM is then characterised
using the process presented in [8] at 824 spatial points in the
input plane, X , taking 50.8 minutes. Despite under-sampling,
we can still determine a great deal about the fibre TM.

III. MATHEMATICAL PROPERTIES OF MCF
TRANSMISSION MATRICES

A. Basis representation

Using SLM1 of Figure 1 we can project optical fields with
arbitrary amplitude, phase and polarisation profiles onto the
distal fibre facet (plane X). With the system aligned these
fields can be accurately simulated via Fraunhofer diffraction
from the hologram displayed on the SLM surface to plane
X . Computer simulations require discretisation so some sam-
pling scheme for the fields must be chosen. Similarly, at the
proximal facet of the fibre (plane Y ) amplitude, phase and
polarisation are measured via multiple measurements on the
camera (see Section IV-C). The sampling here is performed by
the camera pixels (resolution: 1200×1200, pixel pitch 5.5µm).

We first consider sampling the input field’s horizontally
polarised component on a regular M × M grid and then
stacking the rows in column-major order (or alternative or-
derings such as Z-ordering or space-filling curves). The result
is an M2 × 1 vector. Repeating for the vertically polarised
component produces a second M2×1 vector. Interleaving the
two polarisations (to preserve spatial locality) gives a 2M2×1
vector, termed x, made up of complex elements representing
coherent light (i.e. x ∈ C2M2

).
Next, we consider the pixels of the camera sampling an

M ×M area at plane Y . Considering the two polarisations
this can be converted to a 2M2×1 vector y ∈ C2M2

. Treating
the fibre as a linear scattering medium, the input and output

fields, x and y are related by linear propagation integrals [12],
which manifest as a TM, A, when discretised so that:

y = Ax (1)

where A is a 2M2 × 2M2 complex matrix. Imaging through
fibres usually requires the recovery of x based on measured y.
This in turn requires the recovery of A either directly [8] or
indirectly [9], both of which require measuring pairs of known
input-output relations (x,y).

Sampling at points on a regular grid (often called the
canonical basis [29]) is not the only way of representing input
and output fields. If vectors x and y are 2M2 dimensional, we
first consider arbitrary coordinate transformations represented
by square 2M2×2M2 matrices, T. Equation 1 then becomes:

y = T−1A′Tx (2)

where A′ is the TM expressed in the transformed coordinates
(i.e. T−1A′T = A). If the rows of T are linearly independent
they form a new basis for expressing input/output vectors and
this transformation is termed a change of basis. This basis need
not be orthonormal, but orthonormality is experimentally pre-
ferrable as it minimises redundancy and ensures numerically
stable inversion.

B. Upsampling and Downsampling

The coordinate transformation matrix, T, need not be
square: it can be 2N2 × 2M2 (with N < M ), representing
a linear projection or downsampling of the input. Equation 1
then becomes:

y = TUA′TDx (3)

where TD is the forward downsampling matrix and TU is the
forward upsampling matrix, and we require that TDTU = I,
where I is the 2N2 × 2N2 identity matrix. The transformed
TM, A′, is of size 2N2 × 2N2 which has significant com-
putational benefits. A 1000×1000 resolution camera (i.e.
M = 1000) might require a 2 × 106 × 2 × 106 TM,
consuming 58.2TB of memory with double-precision floating
point complex numbers. Downsampling to N = 100 shrinks
the memory requirement to 6.0GB while still accounting for
20,000 propagating modes.

The minimum value for 2N2, the dimension of the down-
sampled TM, without loss of information can be determined by
considering A as a multiple-input multiple-output information
carrying channel [30]: 2N2 should be≥ Q, the number of non-
zero singular values of A. This cutoff can be computed at a
particular wavelength for well-defined waveguides (e.g. MMF
[31]) or determined empirically using a very large number
of measurements [32], [33]. If the number of experimental
measurements, P , is known to be less than Q then minimal
information loss is achieved with 2N2 = P .

There are multiple methods of downsampling (i.e. deter-
mining TD of Equation 3). A simple approach is to select
2N2 pixels from the 2M2 available pixels. For example, if a
scanned spot basis is used, the pixel nearest the centre of each
spot position could be selected. TD would then resemble a
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Fig. 1. Experimental set-up used for characterisation and imaging through multicore fibre (adapted from [8]). The input (X) and output (Y) planes are indicated
for reference. SLM = spatial light modulator, M = mirror, HWP = half-waveplate, PBS = polarising beam splitter, L = lens.

permutation matrix with each row containing a single 1 and
no other non-zero elements. For MMF a suitable downsam-
pling is achieved with a basis of eigenmodes computed for
circularly symmetric refractive index profiles (e.g. Laguerre-
Gauss or Hermite-Gauss). This is achieved experimentally by
displaying a sequence of holograms on the SLM that act as
complex spatial filters for this basis and then measuring the
complex correlation coefficient [31]. In both these examples,
downsampling enables fewer experimental measurements to be
recorded, significantly reducing memory usage as discussed
above. However, the actual measured TM now available for
image reconstruction is the matrix product TUA′, determined
by measuring pairs of vectors (TDx,y).

When recovering a distal image, x, from a measured field,
y, we require the inverse TM so rewrite Equation 3 as:

x = T+
D(A′)−1T+

Uy (4)

where (..)+ represents a general inverse such that TDT+
D = I

and T+
UTU = I. T+

U is now termed the backward down-
sampling matrix and T+

D is termed the backward upsampling
matrix and it follows from Equation 3 that T+

UT+
D = I. T+

U

has the implicit role of determining which pixels in y carry
the most relevant information required for reconstructing x.
T+
D has the role of interpolating recovered points to form an

image, x, of dimension larger than the fundamental TM, A.
In the simplest case, this can be defined to implement a linear
interpolation between points.

Next, we consider the inverse of the recorded matrix prod-
uct, denoted B:

B = (A′)−1T+
U (5)

Given some appropriate interpolation, T+
D, we can directly

reconstruct x from a recorded y using B. However, since T+
U

is dependent on the exact imaging system and basis used,
we wish to decouple its effect from that of A−1 which is
considered a more fundamental fibre property that can be used
to examine, for example, the fibre eigenmodes.

There are many possible candidates for T+
U given a known

TD. For the MMF case, one can be constructed using the

conjugate transpose of the Laguerre-Gauss or Hermite-Gauss
basis, which effectively uses prior knowledge of the ideal
waveguide modes (and optical reciprocity) to optimally utilise
all available power [34], [35].

For the MCF case we consider an example using data from
[8] where TD is a downsampling permutation matrix that
selects 1648 rows (the number of measurements, chose for
experimental practicality) of the 2.88 million (1200× 1200 in
2 polarisations to match camera) available at plane X . The
requirement T+

UT+
D = I could be satisfied trivially by setting

TU = TD but this implies that T+
U is a permutation matrix

like TD and that there is no useful power between sampling
points, which is physically unlikely. To find a more realistic
T+
U , we define some required properties of the factorisation

of the measured matrix product, B, using its singular value
decomposition, B = UBSBVH

B :
1) T+

UT+
D = I. This ensures that the upsampling and

downsampling bases invert one another.
2) The singular value decomposition of B will have the

same left singular vectors, UB , as the singular value
decomposition of (A′)−1. This is because (A′)−1 is the
leftmost term in the factorisation of B.

3) T+
U should ideally be an orthogonal basis, i.e. it should

not discard information during downsampling. There-
fore, the singular values of (A′)−1 should be the same
as the singular values of B.

4) Ideally, (A′)−1 should be symmetric so as to ensure
its eigenvectors are orthogonal. However, optical losses
or improper sampling can create the appearance of
asymmetry so this requirement is not strict.

Again, selecting T+
U = TD, a permutation matrix in this

case, tends to produce a poorly-conditioned (A′)−1 (violating
the third requirement) because only a small fraction of power
is coupled to the specific pixels sampled.

An improved approach is to sum pixels in the neighbour-
hood of each sample point (e.g. all pixels that are closest to that
point than any other, the Voronoi cell). This approach utilises
the expected light confining and wave-guiding properties of
the MCF structure. We generate an estimated sampling matrix,
termed T̂+

U , by setting the appropriate columns in the Voronoi
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region to 1 for each of the 2N2 rows. This is still suboptimal,
as the elements of the optimal T̂+

U might take any complex
value. To proceed, we approximate the expected amplitude
profile of (A′)−1, termed Aamp:

Aamp = |B| (T̂+
U )+ =

∣∣(A′)−1T+
U

∣∣ (T̂+
U )T (6)

where |·| is the element-wise modulus and we use the transpose
of T̂+

U as an approximate inverse because each row (T̂+
U )

comprises an approximately equal number of non-overlapping
1s. Next, we determine the left singular vectors and the
singular values of (A′)−1 by finding the left singular vectors
and singular values of B, using a singular value decomposition
such that these are both 2N2 × 2N2 matrices.

Finally, we estimate the full complex (A′)−1 using a novel
error reduction (or alternating projection) iterative algorithm
[36]. The algorithm developed here alternates between con-
straining the estimated right-hand singular vectors of (A′)−1

to form a unitary matrix and constraining the amplitude of
(A′)−1. The projection operator is a multiplication by UBSB
(or its inverse). This process is depicted in the flowchart of
Figure 2. The appropriate backward downsampling matrix,
T+
U can be determined from (A′)−1 and the measured B.

The final step is to set the appropriate elements of T+
U to 1

to satisfy TDTU = IN . The resultant basis satisfies the first
3 requirements and is comprised of spots translated across the
fibre facet with randomised phase profiles (Figure 3a shows
an example element). The average amplitude envelope, with a
full-width half-maximum of 40µm, is shown in Figure 3b. An
example estimated (A′)−1 is shown in Figure 3c and it can
be seen that the matrix is approximately symmetric.

C. Approximating eigenmodes of MCF

The upsampling and downsampling matrices can be used to
express the TM as a square matrix and therefore compute the
eigenmodes (or eigenvectors) and eigenvalues. The magnitudes
of the eigenvalues are all close to 1 (Figure 4b), showing
that there is near-minimal loss (equivalently, near-maximal
information transfer) through (A′)−1. The eigenmodes can
be plotted in the original 1200×1200 pixel frame of plane
y using the upsampling matrix and are seen to have power
uniformly spread across the fibre facet with randomised phase
(example shown in Figure 4a). This agrees with theoretical
work predicting that the eigenmodes of MCF are supermodes
filling the entire facet [21].

D. Other useful bases for MCF

In MMF the theoretical eigenmodes (e.g. Laguerre-Gauss
basis) typically produce a sparse TM in which most of
the elements are zero [31]. The sparsity enables parallelised
characterisation (see Section IV-B) and the theoretical model
aids physical insight.

By contrast, the MCF eigenmodes are highly complex with
very heterogenous phase profiles and so any slight pertubation
(e.g bending) may result in a very different set of eigenmodes.
These eigenmodes are not then a robust choice for a sparse
basis. A more robust sparse basis can be constructed with

Fig. 2. Flowchart detailing algorithm used to find the downsampled TM,
(A′)−1. The result of this can then be used to estimate the backward
downsampling matrix, T+

U .

inspiration from the upsampling basis of Section III-B each
basis element is a spot with Gaussian amplitude profile and
flat phase, translated to different positions. New basis elements
are easily created on the fly by tilting a mirror or displaying
a blazed grating on an SLM, instead of needing to store
large libraries of bespoke holograms as with the MMF sparse
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Fig. 3. Results of the algorithm for determining an upsampling matrix
(Figure 2): a) Visualisation of a selected basis element showing amplitude
and phase in the vertical polarisation. Only a subsection of the full fibre
is characterised to reduce computational load (indicated by the coloured or
black areas) and the shape is due to the rectangular array of spots used to
parallelise measurements (see Figure 11). Other basis elements appear similar
but translated with randomised phase. b) By averaging the amplitudes of many
basis elements and taking a cross section, an approximately Gaussian (or
perhaps hyperbolic secant) amplitude envelope is observed. c) Visualisation
of the reduced inverse matrix, (A′)−1. It is observed that it is broadly,
though not exactly, symmetrical suggesting that an approximately orthogonal
eigenbasis can be found.

bases. This basis is a Fourier conjugate of the ‘angled plane
wave’ basis [37], [14]. Physically, the sparsity arises from the
lateral confinement of light and can be exploited to parallelise
measurements (Section IV-B).

There are other practical considerations when deciding an
experimental basis. For example, if the basis is being projected
onto to the MCF facet via a lens, there is a trade-off between
minimising distortion at the edge of the MCF facet, achieved
with long focal length lenses and having a small of the Gaus-
sian spot, achieved with short focal length lenses. Phase-only
SLMs can only redistribute light, rather than block it, so it is
difficult to fully ‘turn off’ a polarisation arm (with reference to
Figure 1) to create a pure linear polarisation basis. An elliptical
polarisation basis with phase-delay between polarisation may

Fig. 4. Example of an eigenmode of the MCF over the characterised region
(shaded). a) Amplitude and phase profile in two polarisations. The eigenmode
is seen to have power uniformly spread across the facet with randomised
phase. b) Plot of the magnitude of the eigenvalues for the MCF, which are
all close to unity.

be more reliable in such cases [8]. If using binary phase or
amplitude SLMs to increase speed, a Hadamard basis may be
appropriate as it is easy to generate [29]. The basis choice may
also be application specific: for example, Fourier and wavelet
bases enable examination of scattering properties useful for
diagnostic tissue imaging [9].

E. Effect of bending

In order to reduce core-to-core coupling, commercial MCFs
have randomised numbers of, spacings between and diameters
of cores [17] making it difficult to model bending deter-
ministically as has been demonstrated for MMF [35]. We
therefore adopt a statistical treatment based on experimental
measurements. Using the set-up of Figure 1, we measure the
TM of a 2m piece of MCF bent in Q different configurations
around a series of posts, creating a range of different bend
radii down to 35mm (to avoid breakage).

We first perform a singular value decomposition of each
of the measured TMs, Aq . The singular values hardly change
under the different bending conditions covering both large and
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Fig. 5. Singular values/principal components of MCF under different bending
conditions: a) Singular values of TMs for 5 bending conditions showing
little difference. b) Principal values comparing 5 TMs, showing that different
bending conditions produce near-orthogonal matrices.

small bend radii (Figure 5a). This suggests that under typical
bending conditions the power (or information) loss of the MCF
is not significant. This agrees with studies on MMF that have
shown that very tight bend radii (< 14mm) are required before
significant information is lost [38]. We then produce a matrix
C by vectorising the measured TMs in column-major order
and concatenating:

C = [vec(A1) · · · vec(AQ)] (7)

We perform a principal component analysis of C (equiv-
alent to a singular value decomposition) to check for any
bend-invariant modes. The resulting principal values are all
nearly unity (within 0.1%) indicating that the TMs are nearly
perfectly orthogonal and that no signficant bend-invariant
modes are found (Figure 5b). By contrast, MMFs with precise
parabolic refractive index profiles possess a set of bend-
invariant eigenmodes [39].

Next we wish to characterise how these TMs change with
bending. We do not expect to observe a significant memory
effect, as seen in previous work [40], because our fibre is
longer (2m vs. <30cm) and we are using a longer optical
wavelength (850nm vs 530nm) resulting in increased core-
to-core coupling. We therefore model the TMs as random
variables. First, we investigate correlations between TM ele-
ments. For 7 different bending conditions (denoted by matrices
A1 · · ·A7) we compute the cross-correlation between TM
elements at row r, column s and row t, column u as:

ξrstu =
[
ars brs · · · grs

]
·

 a∗tu
...
g∗tu

·

 (8)

where a denotes an element of A1, b denotes an element of
A2 etc. Each TM element, e.g. ar,s, represents a coupling
between a point on the input facet (xr, yr) and a point on the
output facet at location (xs, ys). Because correlation compares
pairs of TM elements we consider a second point, (t, u) and
define the following quantities:

∆x1 = (xr − xt) ∆y1 = (yr − yt)
∆x2 = (xs − xu) ∆y2 = (ys − yu)

(9)

S =
√

∆x21 + ∆y21 + ∆x22 + ∆y22 (10)

Fig. 6. Statistical properties of MCF TM under a range of bending conditions.
a) Correlation between matrix elements of the full TMs as a function of
physical separation of the input and output points. b) Parameters of Rician
distribution independently fitted to each element of downsampled TMs across
7 bending conditions. The zoomed inset shows coupling of non-zero mean
between fibre cores (Rician fading), which appears as stripes, and zero-mean
coupling between cores and cladding (Rayleigh fading), which appears as
black speckle.

For fixed input coordinates (e.g. elements ar,s and ar,u),
S simply represents the distance between output points. We
might then expect an inverse relationship between ξ and S.
We next compute S and ξ for a random subset spanning 10%
of possible TM element pairs (to reduce computational load)
and observe an inverse relationship (Figure 6a).

Correlation drops to 0.5 by S=0.3µm, the physical distance
mapped to adjacent camera pixels, and is comparable to the
diffraction limit of ∼ λ/2 ≈ 0.42µm. This decorrelation
within a core may be due to multimodal propagation [42] or
to fields in the cladding [43]. The correlation drops further
to 0.2 by S=1µm, the average core radius [41], followed by
a long tail extending to 50µm, the approximate width of the
amplitude envelope of the ideal upsampling basis (Figure 3).

The low correlation enables the TM elements to be modelled
as independent random variables. Each element is formed by
the coherent addition of light propagating via many paths so its
amplitude can be modelled by a Rician distribution, borrowed
from the concept of Rician fading in wireless communications
[44]. The Rician distribution is derived as the amplitude of a
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complex circularly symmetric Gaussian distribution and has
two parameters: ν, representing the distance of the mean of
the underlying Gaussian from the origin, and σ representing
the standard deviation.

We determine maximum likelihood Rician parameters
across 7 bending conditions using TMs downsampled via the
process of Figure 2. The results are shown in Figure 6b. There
is a strong diagonal element meaning that a significant amount
of light is confined or guided. This is expected because MCF
forms approximate images without correction.

Zooming in, we observe that ν exhibits significant off-
diagonal components forming a ‘streaked’ pattern (Figure 6b).
This is because the input and output sampling functions may
be centred either on a core or in the cladding. Core-core
and cladding-cladding coupling results in non-zero mean, ν,
and thus Rician fading, while core-cladding or cladding-core
coupling is more likely to have zero mean and thus Rayleigh
fading (producing the black speckle observed in Figure 6b).
Just as Rayleigh fading in radio systems is due to indirect
reflections off objects, here it is due to indirect coupling
caused by bending. This indicates that in terms of mean
power coupling, core-core or cladding-cladding modes are less
sensitive to bending. However, the Rician fading model does
not specify phase and we observe empirically that the phase of
all TM elements is uniformly distributed ∼ U(0, 2π), making
useful prediction difficult and preventing the existence of truly
bend-invariant modes.

F. Correcting for TM drift
Over time the TM of the fibre will vary due to perturbations

such as bending or temperature changes. If these perturbations
can be tracked or predicted the TM can be adjusted to avoid
deteriorating image quality [45], [35]. A zero-order model
tracks the global phase over time relative to a ‘reference beam’.
In interferometric systems this entails tracking drift between
the signal and reference arms [45]. With MCF an alternative
reference beam is created by projecting a constant field onto
a small set of cores (see Figure 7a and b).

A first order model tracks phase tilt, which arises due to the
memory effect that is observed when MCFs are bent very small
[40]. The tilt can be considered to arise from bending-induced
path length differences. By displaying a constant reference
pattern on SLM1 of Figure 1 and repeatedly imaging the field
at plane Y , a time-varying phase tilt is observed (Figure 7c).

Further insight is gained by observing the phase tilt drift
under different bending conditions (Figure 8). Bending is
quantified by averaging the absolute value of curvature over
the fibre length. Curvature is measured by fitting an osculating
circle to the fibre path traced from an image. It is noted that
higher curvature is linked with a higher rate of tilt drift, with
an upper bound that is approximately a negative exponential
curve with a time constant of the order of minutes. This is
consistent with a simple heating model (e.g. Newton’s law
of cooling). We therefore hypothesise that a small amount
of light couples out of the MCF (especially at sharp bends)
and is absorbed by the protective sheath, slightly heating it
which in turn induces small differential bending. This ‘micro-
bending’ may fall within the memory effect range of this fibre

Fig. 7. Correcting for TM drift: a) A hologram displayed on an SLM during
fibre characterisation or imaging creates a global phase ‘reference beam’
that stays in a fixed position. b) Experimental image showing a low-power
reference beam during a characterisation measurement. c) Experimental image
showing phase difference between two reference images recorded at different
times showing first-order drift. A first-order Zernike polynomial phase tilt is
fitted, and can be tracked with time.

Fig. 8. Drift of phase tilt with time for 11 different bending scenarios. The
upper bound seems to follow an exponential trend with a time constant of 22.8
minutes, suggesting a small thermal effect. At a tilt magnitude of ∼0.04 the
phase tilt is still relatively clear above the noise (lower inset), but above this
the phase drift becomes spatially randomised as the memory effect weakens
(upper inset).

hence producing a phase tilt. At lower curvature the drift of
phase tilt is observed to be slower, but still with the same
general increasing trend. Further experimental investigation of
the effect of varying laser power, which is here fixed at 35mW,
is required to fully verify this thermal drift hypothesis.

Superimposed on this exponential trend, we observe random
fluctuations with time scale of order ∼1 minute which limits
the minimum time between tracking measurements. If this
time is less than the TM characterisation time, then phase
tilt correction must be applied to each of the characterisation
measurements [8]. Failure to do so results in significant TM
error and poor image recovery (Fig. 9). The relative stability
of polarisation retardance (i.e. birefringence) suggests that the
cause of this drift in tilt is minor path length changes and that
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Fig. 9. The effect of correcting for time-dependent phase tilt. If the TM
is reconstructed using uncorrected characterisation measurements, significant
amplitude and phase error is introduced. Polarisation information is more
robust. Scale bar: 50µm

there is negligible contribution from stress and strain [35].
If the tilt magnitude drifts above 0.04 there is significant

residual noise in the reference phase images even after cor-
recting for tilt (Figure 9). This is because bending has moved
beyond the memory effect range and has changed the TM in
an unpredictable way, requiring it to be re-measured in full.
To avoid this for most realistic bending configurations, matrix
characterisation and imaging ought to be performed within
about 4 minutes, as per Figure 8.

IV. PRACTICAL IMAGING THROUGH MCFS

A. Aligning MCFs

A key advantage of MCF over MMF is that TM char-
acterisation in a pixel (or canonical) basis does not require
precise transverse alignment but still provides a reliable
sparse representation basis for the TM (see Section III-A).
By contrast, the Laguerre-Gauss basis that provides sparse
TMs in MMF requires extremely precise transverse alignment
with the central axis of the fibre, often to within fractions
of a micron. However, MCFs do require some alignment:
first, the characterisation patterns on the fibre facet (plane
X of Figure 1) must be in focus. The relatively high lateral
confinement of light (Section III-E) means amplitude images
are approximately formed through the fibre without correction
and so can be used to evaluate focus, for example by using a
recognisable text sequence.

Next, the two polarisations much be aligned for reliable
production of elliptical polarisation states. To do this, the
vertically polarised beam is first ‘turned off’ by displaying a
random pattern on the appropriate half of SLM1 to scatter
light. The other half of SLM1 (i.e. horizontally polarised
beam) displays a blazed grating and scans the x and y pitch,
which in turn scans a spot across the distal facet. The camera
measures the distorted spots at the other end of the MCF

Fig. 10. Aligning the horizontally and vertically polarised characterisation
beams for dual polarisation MCF characterisation. a) For each polarisation a
grating is used to scan a spot in two dimensions and the centroid of each on the
output facet is determined. b) A hyperplane is then fitted to each polarisation
to average distortion introduced by the fibre TM. This is then used to adjust
the tilt on the vertical polarisation so that it is aligned with the horizontal
polarisation.

and the centroids are determined (Figure 10a). A 2D plane
embedded in 4D space is then fit to the centroid positions to
average out distortions introduced by the fibre TM. The result
is a precise map between grating pitch and spatial position. We
repeat the process for the vertically polarised beam with the
horizontally polarised beam ‘turned off’, and find the relative
spatial offset between the two fitted planes. This offset is used
to adjust the pitch of the vertically polarised grating and hence
align the two polarisations (Figure 10b.

B. Parallelising calibration measurements

The sparse structure of MCF TMs when using a spot basis
(see SectionIII-D) means that separate areas of the TM can
be characterised in parallel. This is because there are rows
of the TM that have no power overlap with any other rows.
Power can also be coupled into two or more locations at the
input facet that will not produce overlap at the output facet
– for example, two spots at opposite sides of the fibre. By
selecting sets of rows for which this property holds between
all pairs, a maximally efficient parallel set of measurements
can be achieved. For a spot basis this means determining how
far apart spots needs to be spaced to avoid significant power
overlap at the output.

Empirical measurement for the MCF used here leads us to
the spot array of Figure 11a. Each single physical measurement
is split into ‘virtual’ independent measurements by isolating
each spot (Figure 11b). This enables a dramatic speed-up in
experimental time – 12-fold here – and 1600 modes can be
characterised in 50.8 minutes [8]. Characterisation speed could
be improved significantly further by using high-speed digital
micromirror devices (DMDs) instead of liquid crystal spatial
light modulators [46], [2].

When using measured input and output fields to reconstruct
the TM, sparsity can be further exploited by noting that most
elements of any given column of the TM will be zero and can
be excluded from calculations, thus reducing computational
requirements (Figure 11c).
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Fig. 11. Exploiting sparsity to parallelise TM characterisation: a) Using
an array of spots spaced sufficiently far apart that the output fields do
not overlap. b) After measurement, the data can be masked to split each
single measurement into several effective measurments (12 in this case).
c) If reconstructing the inverse TM (A−1) column by column, only rows
within the specificed subregion for a given input (which is different for every
input/column of A−1) will be non-zero – the rest can be excluded from
calculations. Adapted from [8].

Such parallelisation is possible in other systems that exhibit
sparsity, for example a MMF with a Laguerre-Gauss basis.
In the MMF case, however, the strong axial symmetry means
that precise alignment is required to achieve parallelisation
making it practically difficult. Further, a large pre-generated
library of holograms is required whereas here we simply need
to generate different blazed gratings [47].

C. Non-interferometric phase recovery

Much fibre characterisation and imaging work uses interfer-
ometry to determine phase from camera measurements [15],
[23]. This approach is fast but requires high coherence lasers,
ruling out most low-cost diode lasers, and is very sensitive to
drift, thermal fluctuations and vibrations [40].

Non-interferometric phase imaging (or phase retrieval) pro-
vides greater stability and permits less coherent lasers at the
expense of increased experimental and computational time.
The experimental set-up of Figure 1 uses a non-interferometric
method that involves generating a through-focus stack of
images at many different focal planes. This is achieved by
displaying a parabolic phase mask on one half of SLM2
(representing one polarisation) that defocusses the beam [8],
[48], shown in Figure 12a. The other half of SLM2 displays
a random hologram to scatter light, effectively deactivating
the other polarisation. An iterative algorithm then simulates
optical propagation between the focal planes using Fresnel
diffraction and constrains the amplitude at each plane. After
typically 200 iterations, this converges to the desired phase
profile [49].

Fig. 12. Non-interferometric imaging of amplitude, phase and polarisation.
a) A parabolic phase mask displayed on the horizontally polarised half of
SLM2 is used to generate defocussed images of the object on the camera.
7 different parabolic masks are used to generate a through-focus stack, from
which phase is recovered using an iterative algorithm [49]. b) Phase stepping
the vertically polarised half of SLM2 and interfering it with the horizontally
polarised image via a 45◦ polariser enables phase-shift interferometry between
the two polarisations.

To measure the full polarisation state, both halves of SLM2
are enabled and are interfered on the camera via a 45◦

polariser. One half of SLM2 is then stepped through different
phase levels from 0 to 2π, effectively performing phase-shift
interferometry. A curve is fit to the amplitude sequence at each
pixel giving the relative amplitude and phase of the second
polarisation (Figure 12b).

V. APPLICATIONS

A. Measurement of polarimetric parameters
Polarimetric imaging measures how objects alter the polar-

isation state of incident light. Applications include examining
molecular structure, e.g. chiral molecules like glucose [50],
and quantifying optical heterogeneity for detecting diseases
such as cancer [8], [51]. Polarimetric data is typically repre-
sented using either the Mueller-Stokes formalism or the Jones
formalism, although with temporally and spatially coherent
light, as is the case here, the two become equivalent [52].

The Jones formalism is a special case of the dual-
polarisation transmission/reflection matrix formalism pre-
sented in Equation 1 where light couples only between po-
larisations and not spatial locations. This gives a 2× 2 matrix
at each point (termed a Jones matrix) that relates a 2D
input field vector to a 2D output field vector (termed Jones
vectors). We must create at least 2 distinct Jones vectors
incident on the sample and measure the associated Jones
vectors after transmission to unambiguously determine the
Jones matrix at a point on the sample. At some location on
the sample, (x, y), consider n output Jones vectors, Vx,y =
[v1(x, y) · · ·vn(x, y)], arising from n distinct input Jones
vectors, Ux,y = [u1(x, y) · · ·un(x, y)]. The 2×2 complex
Jones matrix, Jx,y , can be determined through:

Vx,y = Jx,yUx,y =⇒ Jx,y = Vx,yU
†
x,y (11)
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Fig. 13. Polarimetric imaging through MCF: a) A 5-parameter model com-
prising an elliptical polariser with parameters of retardance (η), retardance
axis orientation (θη) and circularity (ξ), followed by a partial polariser with
parameters of diattenuation (D) and diattenuation axis orientation (θD). b)
Experimental results showing polarimetric imaging through MCF (Figure 1)
of a birefrigent test target (R2L2S1B, Thorlabs). Parameters were extracted
from raw data via Bayesian inference in the STAN package [55] using the
model of Equation 16. Scale bar: 100µm (Figure adapted from [8]).

where † indicates a Moore-Penrose pseudoinverse. The mul-
tiple distinct input Jones vectors could be generated either
through a separate fibre, e.g. a polarisation maintaining fibre
[53], or by illumination through selected cores of the MCF
[54], though the latter may require advance knowledge of the
fibre TM.

The Jones matrix can be further factorised to produce more
easily interpretable parameters. This requires defining a model
and fitting data to it – here, we use a model of an elliptical
retarder followed by a partial polariser (Figure 13a).

Factorising Jx,y in terms of these two components gives:

Jx,y = ApolAret (12)

Apol = (R(θD))
−1
( √

1 +D 0
0

√
1−D

)
R(θD) (13)

Aret =

(
1 0
0 eiξ

)
(R(θη))

−1
(
eiη/2 0

0 e−iη/2

)
·R(θη)

(
1 0
0 e−iξ

) (14)

where R(θ) is a rotation matrix and the 5 resolved polarimetric
parameters are diattenuation, D, diattenuation axis orienta-
tion, θD, retarder circularity, ξ, retardance, η, and retardance
axis orientation, θη with the following ranges:

θη, θD ∈ (−π/2, π/2], η, ξ ∈ (−π, π], D ∈ [−1, 1] (15)

For each set of parameters, there is a 7-fold degeneracy and
so for display purposes the degenerate set closest to some fixed
point is used [8]. We perform this factorisation using Bayesian
inference due its robustness to noise and overfitting [56].
We first apply Bayes’ theorem to model the joint probability
distribution of parameters (θθθ = [D, θD, ξ, η, θη]) at location
(x, y) conditional on the known input and measured output
Jones vectors, termed the posterior distribution:

p [θθθ|Ux,y,Vx,y ] ∝ p [Vx,y = Jx,y(θθθ)Ux,y] · p(θθθ) (16)

The elements of Vx,y , denoted vab(x, y), represent mea-
sured complex quantities and are assumed to be independently
distributed complex Gaussian variables (see Section III-E):

vab(x, y) ∼ CN
[
Jx,y(θθθ)uab(x, y), σ2I

]
(17)

where uab(x, y) is element (a, b) of Ux,y , σ2I is the co-
variance matrix, and CN (µ,Σ) is a 2-D complex Gaussian
distribution of mean µ and covariance Σ. σ, the noise standard
deviation, can be inferred from the data along with the other
parameters. This enables evaluation of the first term of the
RHS of Equation 16.

The second term, p(θθθ) represents the prior distributions
of parameters, which we will assume are independently dis-
tributed (i.e. p(D, θD, η, θη, ξ) = p(D)p(θD)p(η)p(θη)p(ξ)).
Joint prior distributions could be derived using more restrictive
physical models or empirical methods such as copulas. The
prior distributions could be uniform distributions across the
parameter ranges of Equation 15, giving broad uninformative
priors. However, more restrictive priors based on physical
intuition improve results: for example, biological samples
rarely exhibit high degrees of linear diattenuation [57] so our
prior for D would have a peak at zero. Phase values require a
circular distribution: here we use the von Mises distribution,
which can be made more restrictive using a non-zero κ value.

With the priors selected to suit the application, parameters
are estimated from Equation 16 either via optimisation (to
find maximum likelihood), or Monte-Carlo simulations (to
examine parameter distributions). Figure 13b shows Bayesian
polarimetric imaging of a birefringent test target (R2L2S1B,
Thorlabs) through an MCF using the experimental set-up of
Figure 1 with a spatial resolution of 36.0±10.4µm (adapted
from [8]). The target should have a background θη = 0 and
a foreground θη = π/4 ≈ 0.78, but the measured mean θη is
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Fig. 14. Using images of entropy measured through MCF (via the experimen-
tal set-up of Figure 1 to identify small tumours (lesion) in mouse oesophageal
tissue. The fluorescence images provide a reference that confirms the increased
density of cell nucleii indicative of tumours. The amplitude entropy images
show relatively little contrast but the phase entropy images indicate increased
light scattering arising from the disordered microstructure of tumour tissue.
Scale bar: 400µm. Figure adapted from [8].

slightly lower at 0.65. This discrepancy may arise because the
target is used outside the design wavelength range, resulting
in different behaviour of the birefringent polymer. The grid-
like artefacts arise from the slightly non-uniform illumination
within each single frame becoming pronounced when multiple
single frames are stitched together as the target is translated.
More details of the experimental set-up, as well as validation
of additional polarimetric properties can be found in [8].

Though we select a particular physical model to fit here, the
Bayesian approach can actually compare many different pos-
sible models by evaluating their likelihoods, a process called
Bayesian model selection. The approach is easily extended to
consider the joint probabilities with neighbouring pixels and
perform spatial smoothing (see [8] for further detail).

B. Entropic imaging for tissue analysis

Another emerging application of imaging through MCF
fibres is imaging spatial entropy. This represents a measure
of the variation of some parameter across a surface and has
proved useful in identifying amorphous structures arising in
diseased tissue[58], [59], [60].

Coherent imaging through MCF provides multiple param-
eters for which entropy could be computed either individ-
ually or jointly: amplitude, phase and inferred polarimetric
properties. Spatial entropy can be computed approximately
by a windowed filtering process: values within the filter
window are binned and the resulting histogram integrated to
compute entropy [61]. This has the downside that selecting
the appropriate binning level can significantly affect results, a
problem that grows significantly worse when estimating joint
entropy between multiple parameters.

Alternatively, we can consider the Kullback-Leibler diver-
gence, which measures the similarity of probability distribu-
tions P and Q with density functions p(x) and q(x) (the 1-D
case) respectively:

DKL(P ||Q) =

∫ ∞
−∞

p(x) log
p(x)

q(x)
dx (18)

Setting Q to be a uniform distribution, DKL(P ||Q) be-
comes a measure of how ‘spread out’ the distribution P is
termed the differential entropy, H:

H = −
∫ ∞
−∞

p(x) log p(x)dx (19)

This measure can be extended to multivariate distributions,
p(x1, · · · , xm), simply by integrating over the additional vari-
ables. We then compute spatial entropy by fitting a multivariate
distribution the desired parameters within a spatial window
and computing entropy via Equation 19. Figure 14 shows
how imaging of phase entropy through MCF can be used to
detect small tumours in tissue due to increased light scattering
(adapted from [8]). The spatial resolution is of the order of
100µm due to the spatial windowing required for entropy, and
the precision of phase entropy is ∼ ±20%.

VI. CONCLUSION

In this paper we presented new empirical results useful for
imaging through MCF. We first presented a new method of de-
termining appropriate upsampling and downsampling schemes
for experimentally measured non-square matrices and used this
approach to, for the first time, experimentally determine the
eigenmodes of an MCF. Next, we presented a novel statistical
analysis examining the effects of bending on MCF inspired by
wireless fading models. We experimentally observed bending-
dependent TM drift, conjectured to be produced by a self-
heating effect, and discussed strategies to compensate. Three
important practical techniques for enabling MCF imaging
were then discussed: alignment, parallelisation of transmission
matrix characterisation, which offers greatly improved speed,
and non-interferometric phase recovery, which offers improved
stability. Finally we discussed two recent applications of MCF
imaging: polarimetric imaging using a Bayesian inference
approach to compensate noise, and entropic imaging for exam-
ining light scattering properties of samples with applications
to cancer imaging.

The range of biomedical imaging techniques demonstrated
through MCF continues to expand. Implementing these in a
very thin form factor is a significant step towards minimally
invasive in vivo biomedical imaging, as early experiments in
mice brains have demonstrated [1], [2], [3]. To develop these
techniques towards clinical translation, two key challenges
remain. First, fibre TM characterisation must be fast enough
to compensate dynamic bending and temperature-induced fibre
distortions in vivo and allow imaging at several frames per sec-
ond. Some progress towards this has been achieved with high-
speed digital micro-mirror devices (frame rates > 22kHz) and
high speed cameras [2], [46]. The second, more fundamental
problem is the need to precisely measure the dynamic effect
of bending and temperature on the TM during use and without
compromising the ultra-thin form factor. One proposed method
is to adjust a pre-measured TM using precise modelling of
bent MMF [35] but in the case of MCF with randomised and
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complex refractive index profiles, precise modelling is likely
infeasible. Guide star approaches provide another option but
may compromise the ultra-thin form factor by adding bulk at
the distal facet [62], [63]. A recently proposed approach aims
to overcome this by exploiting a compact reflector structure
at the distal facet [64], though experimental implementation
remains to be achieved.

ACKNOWLEDGEMENTS

GSDG acknowledges funding from Cancer Research UK
(C47594/A21102, C55962/A24669); and a pump-priming
award from the CRUK Cambridge Centre Early Detection
Programme (A20976). RPM acknowledges funding from the
EPSRC (EP/L015889/1). SEB acknowledges funding from
CRUK (C47594/A16267, C14303/A17197, C47594/A21102);
and the EU FP7 agreement (FP7-PEOPLE-2013-CIG-630729).

REFERENCES

[1] S. Ohayon et al., “Minimally invasive multimode optical fiber microen-
doscope for deep brain fluorescence imaging,” Biomed. Opt. Express,
vol. 9, no. 4, p. 1492, 2018.

[2] S. Turtaev et al., “High-fidelity multimode fibre-based endoscopy for
deep brain in vivo imaging,” Light Sci. Appl., vol. 7, no. 1, p. 92, 2018.

[3] S. A. Vasquez-Lopez et al., “Subcellular spatial resolution achieved for
deep-brain imaging in vivo using a minimally invasive multimode fiber,”
Light Sci. Appl., vol. 7, no. 1, p. 110, 2018.

[4] D. Loterie et al., “Digital confocal microscopy through a multimode
fiber,” Opt. Express, vol. 23, no. 18, p. 23845, 2015.

[5] E. E. Morales-Delgado, D. Psaltis, and C. Moser, “Two-photon imaging
through a multimode fiber,” Opt. Express, vol. 23, no. 25, p. 32158,
2015.

[6] D. B. Conkey et al., “Lensless two-photon imaging through a multicore
fiber with coherence-gated digital phase conjugation,” J. Biomed. Opt.,
vol. 21, no. 4, p. 045002, 2016.
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