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ABSTRACT 

Optoacoustic Tomography (OT) is now widely used in preclinical imaging, however, 

precision (repeatability and reproducibility) of OT has yet to be determined.  

Methods: We used a commercial small animal OT system. Measurements in stable 

phantoms were used to independently assess the impact of system variables on 

precision (using coefficient of variation, COV), including acquisition wavelength, 

rotational position, frame averaging. Variables due to animal handling and 

physiology, such as anatomical placement and anesthesia conditions were then 

assessed in healthy nude mice using the left kidney and spleen as reference organs. 

Temporal variation was assessed by repeated measurements over hours and days 

both in phantoms and in vivo. Sensitivity to small molecule dyes was determined in 

phantoms and in vivo; precision was assessed in vivo using IRDye800CW.   

Results: OT COV in a stable phantom was less than 2% across all wavelengths over 

30 days. The factors with greatest impact on the signal repeatability in phantoms 

were rotational position and user experience, both of which still resulted in a COV of 

less than 4%. Anatomical region of interest size showed the highest variation at 12% 

and 18% COV in the kidney and spleen respectively, however, functional SO2 

measurements based on a standard operating procedure showed exceptional 

reproducibility of <4% COV. COV for repeated injections of IRDye800CW was 6.6%. 

Sources of variability for in vivo data included respiration rate, user experience and 

animal placement. 

Conclusions: Data acquired with our small animal OT system was highly repeatable 

and reproducible across subjects and over time. Therefore, longitudinal OT studies 

may be performed with high confidence when our standard operating procedure is 

followed. 
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INTRODUCTION 

Optoacoustic Tomography (OT) is a fast developing imaging modality, 

combining the high resolution and penetration depth of ultrasound detection with the 

high contrast available from optical absorption in tissue (1). Endogenous optical 

absorption provides structural and functional imaging information (2,3), while the 

introduction of exogenous contrast agents in vivo enables molecular imaging (4,5) for 

example, by targeting specific cell receptors (6) or enzymatic processes (7). Given 

that OT is finding widespread application in preclinical imaging (8) and has potential 

for rapid clinical translation (1), technical validation assessing both accuracy and 

precision (9,10) is now vital.  

To date, technical validation of OT has focused on accuracy, using light 

fluence models to enable quantitative determination of absorption coefficients (11). 

There is a paucity of data on precision, which can considered as measurement 

repeatability, with the same subject or user, and reproducibility, with independent 

subjects or users. Precision is often characterized by the coefficient of variation 

(COV), which has been assessed to a limited extent for OT in phantoms (12), but not 

in vivo, where animal handling and physiology significantly impact results (8). High 

intra-subject COV limits the applicability of a modality for longitudinal imaging 

studies, whereas high inter-subject COV would modify study design (e.g. requiring 

that each animal serve as their own control). Here, we developed and applied a 

framework for evaluating precision of OT systems in phantoms and living subjects. 

Our results show that precision of the OT system tested compares favorably with 

existing preclinical imaging modalities and hence could be reliably applied in 

biomedical research. 
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MATERIALS AND METHODS 

Optoacoustic tomography system 

A number of commercial small animal optoacoustic systems are now 

available (13). In this study, we used a MultiSpectral Optoacoustic Tomography 

(MSOT) system (inVision256-TF; iThera Medical) described in detail elsewhere 

(14,15). Briefly, a tunable (660–1300nm) optical parametric oscillator pumped by an 

Nd:YAG laser provides 9ns excitation pulses at 10Hz repetition rate. Ten arms of a 

fiber bundle illuminate a ring of ~8mm width at the sample, with fluence below the 

maximum permissible exposure according to ANSI Z136.1 over the wavelength 

range investigated (Supplemental Fig. 1). Laser energy is recorded for each pulse 

and the acoustic signal is divided by this value prior to saving. The sample is 

mounted in a motorized holder for linear translation in the z-direction over a range of 

<150mm (Fig. 1A). Coupling of the sample to the transducers is achieved using a 

water bath, filled with degassed, deionized water. For ultrasound detection, 256 

toroidally focused ultrasound transducers specified at 5MHz center frequency, 60% 

bandwidth, are organized in a concave array with 270 degree angular coverage and 

a radius of curvature of 4 cm.  

Framework for evaluating precision of preclinical optoacoustic tomography 

 For preclinical imaging in small animals, evaluation of precision should be 

made separately across anatomical (e.g. tumor volume), functional (e.g. 

oxygenation) and molecular (e.g. tracer uptake) parameters. Firstly, to account for 

system variation, the precision of the imaging data in phantoms should be assessed 

across all acquisition variables (e.g. wavelengths, rotational positions, averaging, 

time). Secondly, the precision across living subjects should be assessed while 

following a standard operating procedure (SOP). Measurements should be taken by 

different users to evaluate the impact of user experience and animal handling. 
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Finally, for contrast agent studies, sensitivity to the contrast agent of interest should 

be determined in addition to precision, to ensure accurate decisions on the dose of 

agent to be used in vivo. Details of standard operating procedures for all experiments 

presented are given in the Supplemental Note. 

     Precision evaluation in phantoms and in vivo. A commercial stable polyurethane 

phantom (fabricated by Computerized Imaging Reference Systems Inc., supplied by 

iThera Medical) with a diameter of 2cm and sound speed of 1430ms-1 was employed 

for phantom studies of repeatability. The acoustic attenuation of the phantom is given 

as 0.5 dB/cm/MHz. Using a commercial stable phantom avoids drift in measurements 

due to matrix degradation and enables users of other systems to replicate our study. 

The phantom bulk is composed of a purely scattering matrix, within which are 

contained absorbing calibration targets. The phantom was clamped into the supplied 

rigid phantom holder, which ensures repeatable positioning, and placed into the 

imaging chamber of the MSOT system (Fig. 1B). Following equilibration of phantom 

temperature with the 36°C water bath for 10min, imaging was performed over 5 scan 

positions covering the calibration targets in 1mm steps. Images were acquired at 

660nm and from 700–1100nm in 50nm steps. The repeatability in longitudinal studies 

was measured over the course of 6 hours, 1 day, and 1 month. Data is shown at 

700nm in all cases, with other wavelengths detailed in Supplemental Table 1. 

We used the same phantom to investigate the effects of sample rotation and 

frame averaging. Sample rotation was assessed due to the incomplete acoustic 

sampling of the system geometry. We acquired data as above with the phantom 

rotated by 0, 90, 180 and 270 degrees with respect to its long axis between 

measurements. To test the impact of frame averaging, we recorded up to 100 frames 

and averaged either the reconstructed image frames (sequential) or the raw acoustic 

signals (continuous), available as options within the acquisition software. Given the 
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use of a rigid holder for phantom imaging, the effect of different operators on 

phantom data acquisition was not explored. 

Procedures in small animals were carried out under the authority of project 

and personal licenses issued by the Home Office, UK and were approved by local 

Animal Welfare and Ethical Review Bodies. Healthy BALB/c nude mice (Charles 

River) aged between 8 and 12 weeks were housed in techniplast green line 

individually ventilated  cages with APB6 bedding on a 12 hours on/off light/dark cycle 

(7am to 7pm) with 5R58 diet.  

Mice were anesthetized using inhaled isoflurane mixed with 100% oxygen 

and placed supine into the animal holder (Fig. 1B). A flexible polyethylene membrane 

surrounded the mouse forming a watertight seal, with anesthesia supplied via a gas 

inlet. A thin layer of clear ultrasound gel (Aquasonics, Parker) applied with a spatula 

was used to couple the skin of the mouse to the membrane. Mouse preparation took 

~15min. Ultrasound gel was centrifuged to remove air bubbles and warmed prior to 

application. Following equilibration of mouse temperature with the 36°C water bath 

for 12min (previously determined by rectal probe), imaging was performed in a single 

slice centered on the kidneys and spleen. Images were acquired between 690nm 

and 880nm in 10nm steps, with 10 averages (continuous averaging).  

The influence of inhaled isoflurane concentration (1.2–3%) on respiration rate 

(40–140 bpm) and the resulting SO2
MSOT measurements was first determined in a 

subset of animals (n=3), after which respiration was maintained at 60-70bpm with 

(1.75±0.25)% isoflurane for the remainder of the studies. For full COV calculations, 

we then examined: continuous imaging over 90min; acquisition of 6 image frames 

leaving the mouse in the same position (without replacement, n=7 mice) or removing 

and immediately replacing the mouse before each acquisition (with replacement, 

subset of n=4 mice); and repeated imaging over 3 days (with replacement). Given 
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that variability is expected in the handling and placement of the mice, data acquired 

by two independent users was also analyzed.  

     Sensitivity and precision for detecting small molecule dyes in phantoms and in 

vivo. To assess the detection sensitivity for small molecule dyes, phantoms with 

defined optical properties that closely mimic biological tissue were fabricated. 

Phantom absorption and reduced scattering coefficients followed the ‘generic tissue’ 

definition given by Jacques (16) and are shown in Supplemental Figure 2. All 

chemicals were purchased from Sigma Aldrich unless otherwise stated. Pre-warmed 

intralipid was added to liquid agar to provide scattering and nigrosin dye to provide 

absorption. The solution was poured into a 20mL syringe (2cm diameter) containing 

a 3D printed plastic mold to create a cylindrical hole of 3mm diameter at the phantom 

center, into which a sealed thin walled plastic straw containing a solution of dye was 

inserted. Commercially available small molecule dyes (relevant to clinical use) were 

used: IRDye 800CW (IR800, Licor), indocyanine green (ICG) and methylene blue 

(MB). IR800 and MB were dissolved in phosphate buffered saline while ICG was 

dissolved in water due to the poor solubility in phosphate buffered saline. The tissue 

mimicking phantom was placed into the MSOT system using the procedure 

described for small animal imaging. The water bath temperature was set to 34°C to 

prevent loss of structural integrity of the agar. Images were acquired at multiple 

wavelengths at 5 scan positions with a 1mm step size.  

To assess in vivo detection sensitivity and precision, we prepared mice (n=3) 

for imaging (as above) but also inserted a tail vein catheter with a dead volume of 

35µL. Under terminal anesthesia (n=2), we performed a dose escalation study, 

injecting 135µL of 2, 4, 8, 20 and 50µM IR800 dissolved in phosphate buffered saline 

at 11 min intervals. In a separate animal, we then repeatedly injected 135µL of 8µM 

IR800 at 16 min intervals. The narrow time intervals between injections mean that 

the dye will not have fully cleared from the bloodstream; we therefore calculated the 
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intensity difference before and after injection, rather than comparing absolute 

intensities. Images were acquired continuously (at the dye specific excitation 

wavelengths) in order to observe dynamics in vivo. 

Image and statistical analysis 

Images were reconstructed offline and analyzed using the ViewMSOT 

software package (v3.6; iThera Medical). The model-linear based reconstruction and 

linear regression multispectral processing tools were used (17,18). The 

reconstruction algorithm includes by default an electrical impulse response 

correction, which accounts for the Gaussian response of the ultrasound transducers 

by deconvolving a reference impulse response from the measured acoustic signals. 

The reference impulse response is based on the vendor specifications for transducer 

performance, the key parameters of which (5MHz center frequency, 60% bandwidth) 

were verified by the manufacturer of the supplied transducer array using pulse-echo 

ultrasound. For the phantom rotation studies, images were reconstructed with and 

without the impulse response. The same speed of sound (adjusted manually) was 

used for all image reconstructions within a given data set.  

Mean pixel intensity and standard deviation values were extracted from 

regions of interest (ROIs). For stable phantom studies, the ROI size (12.3mm2) and 

position were identical across all data sets (Fig. 1C) and single wavelength images 

were used for analysis. For tissue mimicking phantoms, the ROI size (6.15mm2) was 

identical across all data sets but the position was optimized between images; both 

single wavelength and multispectral images were used. For small animal studies, 

ROIs were drawn around the left kidney and the spleen (Fig. 1C) in each mouse. 

When IR800 was injected, ROIs were drawn around the right kidney, to avoid any 

confounding influence of light attenuation by the spleen.  
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Linear regression with published spectra for oxy- (HbO2) and deoxy-

hemoglobin (Hb), as well as IR800 (19,20), was used to produce images in arbitrary 

units that indicate the relative weight that each spectrum contributes to a given image 

pixel. Oxygen saturation was extracted as the ratio of ROI data from the HbO2- and 

Hb- weighted images and calculated as HbO2/(Hb+HbO2). OT is only able to 

accurately resolve absolute SO2 if the recorded signal can be related to the absorbed 

optical energy distribution, which requires knowledge of the light fluence distribution, 

system response and Grueneisen parameter (11); as we do not have this 

information, our image intensities are given in arbitrary units and we denote the 

oxygenation metric derived in this study as SO2
MSOT. Total hemoglobin (THb) was 

extracted as (Hb+HbO2), hence is given in arbitrary units. 

COVs were calculated from raw data extracted from ROIs as the ratio of the 

standard deviation to the mean, expressed as a percentage. Signal-to-noise ratio 

(SNR) was calculated as the ratio of the signal ROI mean to the background ROI 

standard deviation. Signal-to-background ratio was calculated as the ratio of the 

signal ROI mean to the background ROI mean. Uncertainty on mean values is 

represented by the standard error unless otherwise stated. Statistical analysis was 

performed in Origin (OriginLab Corp.). 
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RESULTS 

Precision evaluation in phantoms 

The temporal repeatability of the optoacoustic tomography system across all 

wavelengths assessed with a commercial stable polyurethane phantom was 

excellent (Supplemental Table 1). No significant drift was seen in the mean pixel 

intensity during continued acquisition over 160min (Fig. 2A), nor over the course of 

6h (Fig. 2B). The COV at 700nm over 6h was 0.5% without replacement (phantom 

remaining in the system for the full 6h), rising to 1.2% with replacement (phantom 

removed between data acquisitions). Over 30 days (with replacement, Fig. 2C) we 

found a COV of just 1.9% with a minor system drift of <0.2%. The laser energy for all 

short term repeatability studies was stable (Supplemental Fig. 3A-C). A decrease in 

energy was observed over 30 days (Supplemental Fig. 3D), as would be expected 

from gradual contamination of the optics, in particular the optical parametric 

oscillator. When a user with no ROI drawing experience was asked to conduct the 

task (compared to 2 years experience for the main user), COV for 6h rose to 1.3% 

and 3.8% without and with replacement respectively and COV over 30 days rose to 

3.1%.  

We also established the influence of sample rotational position and image 

averaging. The 0° and 180° rotations are located within similar view fields of the 

transducer array, whereas the 90° rotation is likely to be less well captured than the 

270° rotation due to the limited bandwidth and field of view of the ultrasound 

transducers, as confirmed by images reconstructed without the correction (Fig. 3A). 

Electrical impulse response correction of the raw data reduced the COV due to 

rotation from 13.4% (Fig. 3B) to 3.6% (Fig. 3C) and almost doubled the image SNR 

(from 46.1 to 91.5). Although our transducer array meets design specifications within 

tolerances, the transducers that capture the left hand side of the image have a 
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tendency towards higher center frequency and bandwidth (manufacturer certificate of 

conformance). This results in an overamplification of the 0° rotation compared to 

180° after correction (Fig. 3C). The improved representation of low frequencies 

(where the field of view of the individual transducers is much wider) results in an 

overall increase in the mean pixel intensity after correction and more comparable 

data at the 90° and 270° rotations.  

For image averaging, the sequential method (averaging of multiple 

reconstructed image frames, Supplemental Fig. 4A) increased SNR but continuous 

(direct averaging of the acoustic signals, Supplemental Fig. 4B) did not. This is likely 

due to the fact that the acoustic signal averaging smooths the raw pressure signals 

so does not account for all factors that influence the noise in the final reconstructed 

image. These data illustrate the trade-off between SNR, which was optimal with >25 

averages (Supplemental Fig. 4A), and acquisition time, which was >25s per data set 

with this number of averages.  

As a preliminary assessment of the generalizability of these precision 

measurements, we also acquired images of the commercial phantom using a non-

tomographic optoacoustic system, which uses a light emitting diode array for signal 

excitation and a linear ultrasound transducer array for detection (Supplemental Fig. 

5A). The acquired data indicated that the same commercial phantom could be 

successfully used in a different geometry. Measured COVs were 13.9% and 6.1% 

over 160min and 6h respectively (Supplemental Fig. 5B,C); these higher values 

relative to the OT system could be due to heating of the excitation light source and 

water coupling medium over time. 

Precision evaluation in vivo 

Given the impact of animal handling and physiology on in vivo imaging data, 

we established the precision of our OT system in living subjects using the left kidney 
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and spleen as reference organs. All ROIs were drawn by an experienced (>1 year) 

user unless otherwise stated. Considering first anatomical size data, the left kidney 

and spleen had average ROI areas of (21.0±0.7)mm2 (COV 12%) and (19.2±1.0)mm2 

(COV 18%) respectively over all mice (n=13). When ROIs were independently drawn 

in repeated frames of individual mice, the average COVs were 4.4±1.2% and 

7.3±0.7% for the kidney and spleen (n=8), increasing to 6.1±1.1% and 10.4±1.5% 

respectively with replacement between acquisitions (n=7). For the following studies 

we used a fixed ROI size and shape for each mouse, copying into repeated image 

frames and allowing adjustments in orientation to position the ROI on the organ. 

Having established the precision of anatomical size data, we then moved on 

to functional data. Example images of Hb and HbO2 are shown in Supplemental Fig. 

6. We noted that ROI data extracted from the Hb and HbO2 images directly, as well 

as their sum (THb) showed a high COV <18.5% between mice (reproducibility); the 

ratiometric readout SO2
MSOT showed a much lower COV with <4% variation (Table 1). 

We attributed the high variation in Hb, HbO2 and THb metrics to inherent biological 

variation between mice, which appears to be minimized by taking the ratio, hence we 

used SO2
MSOT as our OT biomarker for temporal COV calculations. We also noted 

that changing the isoflurane anesthetic concentration in the range 1.2–3% over 

10mins (associated respiration rate range 40–140 bpm) resulted in >30% decrease 

in spleen SO2
MSOT and >9% decrease in the kidney (p=0.047, 0.043 respectively by 

paired two-tailed t-test; n=3). For the temporal studies, we therefore maintained all 

mice using isoflurane anesthetic concentration (1.75±0.25)% (respiration rate range 

60-70bpm) during imaging to minimize variation. 

Temporal repeatability in vivo was assessed over 90mins (one continuous 

acquisition) then during 6 consecutive acquisitions on one day (with and without 

replacement) and over 3 days. COVs are calculated for the ratiometric SO2
MSOT 

measurement; THb is shown for comparison. We observed a drift in SO2
MSOT and 
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THb over 90mins (Fig. 4A), but for repeated measurements, we found excellent 

longitudinal repeatability over 6 acquisitions within the same day (Fig. 4B). While this 

remained true for SO2
MSOT over 3 days, it was not the case for THb (Fig. 4C). Since 

the animal holder is not rigid, we examined the impact of replacement and also of 

different users. Replacement of the mouse between sequential acquisitions led to a 

COV of <1.4% compared to <0.6% without replacement (Table 2). A less 

experienced user (acquisition and ROI drawing performed in fewer than 10 mice) 

resulted in only a marginally higher COV (<0.8%). One-way repeated measures 

ANOVA performed for the left kidney and spleen, SO2
MSOT and THb, indicated that 

replacements had no significant influence on the variation (p>0.27) but individuals 

were significantly different (p<0.0001). Over 3 days, neither replacements (p>0.09) 

nor individuals (p>0.47) were significant. Overall COV in SO2
MSOT was <1% for 

repeatability and <4% for reproducibility. 

Sensitivity for small molecule dyes in phantoms and in vivo 

Detection limits were determined to be 100nM for IR800 (Supplemental Fig. 

7A) and ICG (Supplemental Fig. 7B) and 5µM for MB (Supplemental Fig. 7C); 

equivalent optical density values were 0.10 (IR800, 777nm), 0.084 (ICG, 778 nm) 

and 0.17 (MB, 664 nm) respectively. Considering the volume of dye present within an 

image slice (determined by the transducer focus as approximately 6.16µL), this is 

equivalent to ~0.62pmol for IR800 and ICG, and ~30.8pmol for MB. The higher 

threshold for MB may be explained by the smaller extinction coefficient higher 

background absorption at its peak wavelength. The absorption spectra 

(Supplemental Fig. 7) recovered from the multiwavelength optoacoustic data 

generally follow those acquired independently on a UV-Vis plate reader, although 

some discrepancies are observed for IR800 and ICG at shorter wavelengths.   

 We tested in vivo sensitivity and precision for IR800 (Fig. 5). We first 

performed dose escalation studies (n=2). We started injections from 2µM based on 
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the detection limits derived above and assuming ~1:25 dilution of the injected 

contrast agent in the blood stream of the mouse (~100µL injection in ~2.5mL blood 

pool). As expected, there was no enhancement at 2µM, only at 4µM. A clear kinetic 

curve was apparent for 8µM (Fig. 5A), which also gave the best reproducibility in this 

limited study (Fig. 5B). For repeated 8µM injections of in one mouse, a COV of 6.6% 

was derived for the rise above baseline after each injection.       
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DISCUSSION 

Here, we developed and applied a framework that can be used for evaluating 

the precision of OT in phantoms and in vivo (21,22). Data acquired in a stable 

phantom showed exceptional repeatability of the OT system tested, with COV <2% 

across all wavelengths over 30 days. Across all parameters tested, the factors that 

demonstrated greatest impact on the signal repeatability were rotational position and 

ROI drawing by an inexperienced user, which nonetheless produced a COV of less 

than 4%.  

 We explored both repeatability (same subject) and reproducibility (between 

subjects) in vivo. For anatomical data, computed tomography and magnetic 

resonance imaging typically show <5% COV for measurements of ROI size both 

within and between animals (23–25). We found relatively high COVs of 12% and 

18% in the kidney and spleen ROI sizes respectively, when compared across all 

subjects. However, when data were extracted from repeated ROI drawing within the 

same mouse (with replacement), the values fell to 6% and 10% respectively. Our 

findings indicate that the primary source of variation in size is anatomical positioning 

within the non-rigid animal holder. In addition, as contrast is defined by the 

concentration of blood vasculature rather than a clear organ boundary, ROI drawing 

for OT is likely to be more subjective than for a modality like CT.  

We observed a significant drift in functional parameters SO2
MSOT and THb 

over 90mins. It has been previously documented that anesthesia induces up to 20% 

change in blood mean hemoglobin concentration (26) and that isoflurane can also 

suppress the erythropoietin hypoxia response and cause vasodilation (27,28), which 

may in part account for the observed drift. The larger effect observed in the spleen 

may be due to the increased hemoglobin concentration of splenic blood, which would 

accentuate these effects (29). The use of water submersion for acoustic coupling 
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may also influence our results, although to the best of our knowledge, the influence 

of external hydrodynamic pressure in mouse hemodynamics has not been quantified. 

These factors may also play in to the longer term drift observed in THb over 3 days; 

further work is necessary to understand the source of this variation. Nonetheless, in 

our SOP we controlled as far as possible for short-term temporal drift by imaging at a 

fixed time point, and for the impact of isoflurane concentration (and associated 

respiration rate) by maintaining consistent values across imaging sessions. Using OT 

to derive SO2
MSOT values with our SOP, we found that the COV across mice was 

always <4% and within the same mouse was <2%. For functional oxygenation data 

extracted from blood oxygen level dependent magnetic resonance imaging or arterial 

spin labeling measurements, COVs in the range of 10-15% are often reported 

(30,31). The relatively low COV values measured in our OT system indicate that it 

could be a competitive approach for preclinical functional imaging. 

Finally we examined dye sensitivity and precision in tissue mimicking 

phantoms and in vivo. For IR800, the detection sensitivity limit in phantoms of 100nM 

translated directly into limiting in vivo dose of 4µM based on the expected dilution of 

the injected volume in the blood stream. Performing dye sensitivity studies in tissue 

mimicking phantoms can therefore assist selection of an appropriate dose for in vivo 

studies for untargeted contrast agents. The COV of the signal rise within the kidney 

over repeated injections was 6.6%. For dynamic contrast enhanced magnetic 

resonance imaging, which uses injected gadolinium to assess perfusion and 

permeability, COV in the derived metric Ktrans is typically greater than 10% (24,32). 

Again, our OT system therefore appears competitive for preclinical functional 

imaging. 

There remain some limitations to this study, which was conducted in a single 

center using equipment from a single vendor. In future, multi-center studies across 

multiple vendors would be needed to assess overall precision of OT. It would also be 



18 

prudent to perform tests over a range of common mouse strains with independent 

physiological measurement, since hemodynamics and skin pigmentation vary 

significantly between strains. For the dye studies, we used a limited number of mice 

and an untargeted contrast agent, which cannot provide insight into the dose 

required for molecular imaging studies where circulatory and cellular barriers must be 

overcome. Such studies should be expanded in future to test targeted contrast 

agents, assessing molecular imaging precision compared to other modalities, for 

example, positron emission tomography (33) and hyperpolarized 13C magnetic 

resonance imaging (34). Future comparison of anatomical, functional and molecular 

imaging measurements made with OT to established preclinical imaging approaches 

will help to establish acceptable performance criteria for OT metrics. 

Nevertheless, we are able to make a number of recommendations based on 

our findings for future studies in vivo using the OT system tested. Firstly, the 

influence of anatomical variation, including biological differences and physical 

(rotational/organ) position on functional metrics can be minimized by extracting the 

ratiometric parameter SO2
MSOT. Secondly, both data acquisition and ROI analysis for 

a single study should be performed by users with the same level of experience. 

Finally, an SOP with consistent animal handling and physiology, including a fixed 

duration and concentration range of anesthesia (resulting in stable respiration rate), 

minimizes variation between mice. If these recommendations are followed, the OT 

system tested provides a high precision readout for preclinical imaging. 

CONCLUSION 

We investigated OT precision across key variables including time and user 

experience in phantoms and in vivo. We find that the optoacoustic tomography 

system tested shows performance consistent with or exceeding other reported 
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values for preclinical imaging modalities, highlighting the potential for widespread 

acceptance as a routine tool in preclinical biomedical research in the near future. 
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Figure Legends 

Figure 1. Illustration of system geometry and sample preparation. The sample is 

placed within the imaging chamber using specialized phantom or mouse holders. (A) 

Schematic of the sample holder geometry within the ultrasound transducer ring. (B) 

Photographs of the two holders and their placement in the system. The resulting 

images (C) of the stable polyurethane phantom (top) and mouse cross section 

(bottom) are illustrated with the regions of interest (ROIs) used for signal (including 

kidney and spleen in vivo) and background (bkgd) in the analysis outlined. Scale bar 

=4mm. 
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Figure 2. Optoacoustic precision as a function of time in the stable 

polyurethane phantom at 700nm. (A) Normalized mean pixel intensity over 

160mins (NR) with slope of (-6.34±1.62)x10-5a.u. (B) Mean pixel intensity (arbitrary 

units, a.u) over 6h in a single day with replacement (R) and without replacement 

(NR) of the phantom between data acquisitions; slopes are (-30.7±28.2)a.u. and (-

4.9±29.2)a.u. respectively. (C) Mean pixel intensity over 30 days (R) with a slope of 

(50.4±4.0)a.u., equating to a 0.17% drift. Data were extracted from the signal ROI 

and represent an average of n=5 scan positions per time point. Replacement 

indicates removal of the phantom from the imaging system between measurements; 

average SNR for replacement data was 239±24 and 234±12 for 6h and 30 days 

respectively. Error bars are within the symbols.  
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Figure 3. Impact of sample orientation within the imaging chamber. (A) 

Reconstructed images of the stable polyurethane phantom four different rotations (0, 

90, 180, 270°) reconstructed without impulse response correction. The white lines 

indicate the location of the ultrasound transducer array. Mean pixel intensities from 

an ROI placed over the larger calibration target (signal ROI in Fig. 1C) were 

extracted without (B) and with (C) impulse response correction. Data in (B,C) 

represent an average of n=5 scan positions, with error bars showing the standard 

error on the mean. The SNR (measured across all positions with a background ROI 

placed at the phantom center) increased after impulse response correction, rising 

from 46.1 to 91.5. Scale bar =4mm. 
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Figure 4. Optoacoustic precision as a function of time in vivo. Repeatability for 

in vivo studies was assessed over 90mins (as a representative single scan time), 6 

consecutive replacements (to assess influence of positioning) and over 3 days 

(mimicking a longitudinal study). (A) Oxygen saturation (SO2
MSOT) and total 

hemoglobin (THb) measured over 90mins [n=3 mice; SO2
MSOT slope=-(9.5±1.9)x10-

4%min-1 left kidney, -(12±1.4)x10-4%min-1 spleen; THb slope=-(30.81±3.05)x10-

4a.u.min-1 left kidney, -(143.8±11.78)x10-3a.u. min-1 spleen]. (B) Over 6 replacements 

little variation was seen [n=7 mice; SO2
MSOT slope=(30.4±9.95)x10-4%, left kidney, 

(17.3±6.10)x10-4% spleen; THb slope=(0.02±0.03)a.u. left kidney, (0.13±0.08)a.u. 

spleen]. (C) SO2
MSOT was also relatively stable over 3 days, but greater variation was 

seen in THb [n=3 mice; SO2
MSOT slope=(18.9±1.2)x10-3%day-1 left kidney, 

(37.6±27.54)x10-3%day-1 spleen; THb slope=(1.2±0.5)a.u.day-1 left kidney, (-4.5±0.6) 

a.u.day-1 spleen]. According to regression analysis, linear fits in B (SO2
MSOT and THb) 

and C (SO2
MSOT only), are not ‘significantly non zero’, indicating that no systematic 

variation can be observed in these data. Error bars are within the symbols unless 

visible within the graph. 
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Figure 5. Sensitivity and precision for in vivo imaging of IR800CW. Dose 

escalation study of injection of 100µL IR800 at concentrations of 4, 8, 20 and 50µM 

using an ROI drawn on the right kidney of two separate mice (A). Injections were 

made sequentially at 11min intervals and data are time and intensity shifted to show 

the point of injection at t=0min. 8µM was identified as ideal for in vivo visualization 

(B), as only a small enhancement was seen at 4µM. Images in (B) are pre-injection 

(left) and at 1min post-injection (right). White arrows indicate contrast agent inflow 

within the kidneys; scale bar is 3 mm. Mean pixel intensity for 3 repeated injections at 

16min intervals of the same concentration and volume are also shown. 
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Tables 

Table 1: Assessing reproducibility (between mice) using the coefficient of 

variation (COV) of the oxy- (HbO2) and deoxyhemoglobin (Hb) signals 

compared to oxygen saturation (SO2
MSOT). COV is of the ROI mean extracted from 

7 mice.  

 

Organ ROI 

Coefficient of Variation (%) 

HbO2 
 

Hb          THb  
 

(HbO2 + Hb) 

      SO2
MSOT 

 
HbO2/(HbO2+Hb) 

Spleen 16.4 13.8 12.9 3.9 

Kidney 18.0 18.4 17.2 3.4 
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Table 2: Assessing the influence of animal preparation and stability in the 

chamber on the coefficient of variation (COV) of oxygen saturation (SO2
MSOT). 

‘Per mouse, with replacement’ is the average COV calculated over 6 image frames 

acquired per mouse imaged by a single experienced user with replacement i.e. 

mouse removed from the imaging chamber in between measurements (n=4 refers to 

the 4 replicates of the experiment). ‘Per mouse, no replacement’ is the average COV 

calculated from 6 image frames acquired per mouse without replacement by a single 

experienced user (n=4) and a second inexperienced user (n=3). The average COV 

over the total n=7 replicates is also given. Error bars represent the standard error on 

the mean. 

 

Organ 

ROI 

Coefficient of Variation (%) 

Per Mouse, 

With Replacement 

 Per Mouse 

No Replacement 

(1 experienced 

user, n=4) 

 (1 experienced 

user, n=4) 

(1 inexperienced 

user, n=3) 

(2 users, 

n=7) 

Spleen 1.35±0.34  0.54±0.08 0.79±0.16 0.76±0.29 

Kidney 1.02±0.15  0.34±0.05 0.64±0.07 0.47±0.18 

 

 

 


