30 research outputs found

    An interplanetary shock traced by planetary auroral storms from the Sun to Saturn

    Full text link
    A relationship between solar activity and aurorae on Earth was postulated(1,2) long before space probes directly detected plasma propagating outwards from the Sun(3). Violent solar eruption events trigger interplanetary shocks(4) that compress Earth's magnetosphere, leading to increased energetic particle precipitation into the ionosphere and subsequent auroral storms(5,6). Monitoring shocks is now part of the 'Space Weather' forecast programme aimed at predicting solar-activity-related environmental hazards. The outer planets also experience aurorae, and here we report the discovery of a strong transient polar emission on Saturn, tentatively attributed to the passage of an interplanetary shock - and ultimately to a series of solar coronal mass ejection (CME) events. We could trace the shock-triggered events from Earth, where auroral storms were recorded, to Jupiter, where the auroral activity was strongly enhanced, and to Saturn, where it activated the unusual polar source. This establishes that shocks retain their properties and their ability to trigger planetary auroral activity thoughout the Solar System. Our results also reveal differences in the planetary auroral responses on the passing shock, especially in their latitudinal and local time dependences.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62930/1/nature02986.pd

    Analysis of Microsatellite Variation in Drosophila melanogaster with Population-Scale Genome Sequencing

    Get PDF
    Genome sequencing technologies promise to revolutionize our understanding of genetics, evolution, and disease by making it feasible to survey a broad spectrum of sequence variation on a population scale. However, this potential can only be realized to the extent that methods for extracting and interpreting distinct forms of variation can be established. The error profiles and read length limitations of early versions of next-generation sequencing technologies rendered them ineffective for some sequence variant types, particularly microsatellites and other tandem repeats, and fostered the general misconception that such variants are inherently inaccessible to these platforms. At the same time, tandem repeats have emerged as important sources of functional variation. Tandem repeats are often located in and around genes, and frequent mutations in their lengths exert quantitative effects on gene function and phenotype, rapidly degrading linkage disequilibrium between markers and traits. Sensitive identification of these variants in large-scale next-gen sequencing efforts will enable more comprehensive association studies capable of revealing previously invisible associations. We present a population-scale analysis of microsatellite repeats using whole-genome data from 158 inbred isolates from the Drosophila Genetics Reference Panel, a collection of over 200 extensively phenotypically characterized isolates from a single natural population, to uncover processes underlying repeat mutation and to enable associations with behavioral, morphological, and life-history traits. Analysis of repeat variation from next-generation sequence data will also enhance studies of genome stability and neurodegenerative diseases

    Supernova remnants: the X-ray perspective

    Get PDF
    Supernova remnants are beautiful astronomical objects that are also of high scientific interest, because they provide insights into supernova explosion mechanisms, and because they are the likely sources of Galactic cosmic rays. X-ray observations are an important means to study these objects.And in particular the advances made in X-ray imaging spectroscopy over the last two decades has greatly increased our knowledge about supernova remnants. It has made it possible to map the products of fresh nucleosynthesis, and resulted in the identification of regions near shock fronts that emit X-ray synchrotron radiation. In this text all the relevant aspects of X-ray emission from supernova remnants are reviewed and put into the context of supernova explosion properties and the physics and evolution of supernova remnants. The first half of this review has a more tutorial style and discusses the basics of supernova remnant physics and thermal and non-thermal X-ray emission. The second half offers a review of the recent advances.The topics addressed there are core collapse and thermonuclear supernova remnants, SN 1987A, mature supernova remnants, mixed-morphology remnants, including a discussion of the recent finding of overionization in some of them, and finally X-ray synchrotron radiation and its consequences for particle acceleration and magnetic fields.Comment: Published in Astronomy and Astrophysics Reviews. This version has 2 column-layout. 78 pages, 42 figures. This replaced version has some minor language edits and several references have been correcte
    corecore