27 research outputs found

    A 3D computed tomography based tool for orthopedic surgery planning

    Get PDF
    Series : Lecture notes in computational vision and biomechanics, vol. 19The preparation of a plan is essential for a surgery to take place in the best way possible and also for shortening patient’s recovery times. In the orthopedic case, planning has an accentuated significance due to the close relation between the degree of success of the surgery and the patient recovering time. It is important that surgeons are provided with tools that help them in the planning task, in order to make it more reliable and less time consuming. In this paper, we present a 3D Computed Tomography based solution and its implementation as an OsiriX plugin for orthopedic surgery planning. With the developed plugin, the surgeon is able to manipulate a three-dimensional isosurface rendered from the selected imaging study (a CT scan). It is possible to add digital representations of physical implants (surgical templates), in order to evaluate the feasibility of a plan. These templates are STL files generated from CAD models. There is also the feature to extract new isosurfaces of different voxel values and slice the final 3D model according to a predefined plane, enabling a 2D analysis of the planned solution. Finally, we discuss how the proposed application assists the surgeon in the planning process in an alternative way, where it is possible to three-dimensionally analyze the impact of a surgical intervention on the patient.(undefined

    Chromosome evolution in Cophomantini (Amphibia, Anura, Hylinae)

    Get PDF
    The hylid tribe Cophomantini is a diverse clade of Neotropical treefrogs composed of the genera Aplastodiscus, Boana, Bokermannohyla, Hyloscirtus, and Myersiohyla. The phylogenetic relationships of Cophomantini have been comprehensively reviewed in the literature, providing a suitable framework for the study of chromosome evolution. Employing different banding techniques, we studied the chromosomes of 25 species of Boana and 3 of Hyloscirtus; thus providing, for the first time, data for Hyloscirtus and for 15 species of Boana. Most species showed karyotypes with 2n = 2x = 24 chromosomes; some species of the B. albopunctata group have 2n = 2x = 22, and H. alytolylax has 2n = 2x = 20. Karyotypes are all bi-armed in most species presented, with the exception of H. larinopygion (FN = 46) and H. alytolylax (FN = 38), with karyotypes that have a single pair of small telocentric chromosomes. In most species of Boana, NORs are observed in a single pair of chromosomes, mostly in the small chromosomes, although in some species of the B. albopunctata, B. pulchella, and B. semilineata groups, this marker occurs on the larger pairs 8, 1, and 7, respectively. In Hyloscirtus, NOR position differs in the three studied species: H. alytolylax (4p), H. palmeri (4q), and H. larinopygion (1p). Heterochromatin is a variable marker that could provide valuable evidence, but it would be necesserary to understand the molecular composition of the C-bands that are observed in different species in order to test its putative homology. In H. alytolylax, a centromeric DAPI+ band was observed on one homologue of chromosome pair 2. The band was present in males but absent in females, providing evidence for an XX/XY sex determining system in this species. We review and discuss the importance of the different chromosome markers (NOR position, C-bands, and DAPI/CMA3 patterns) for their impact on the taxonomy and karyotype evolution in Cophomantini

    New Information on the Cranial Anatomy of Acrocanthosaurus atokensis and Its Implications for the Phylogeny of Allosauroidea (Dinosauria: Theropoda)

    Get PDF
    Allosauroidea has a contentious taxonomic and systematic history. Within this group of theropod dinosaurs, considerable debate has surrounded the phylogenetic position of the large-bodied allosauroid Acrocanthosaurus atokensis from the Lower Cretaceous Antlers Formation of North America. Several prior analyses recover Acrocanthosaurus atokensis as sister taxon to the smaller-bodied Allosaurus fragilis known from North America and Europe, and others nest Acrocanthosaurus atokensis within Carcharodontosauridae, a large-bodied group of allosauroids that attained a cosmopolitan distribution during the Early Cretaceous.Re-evaluation of a well-preserved skull of Acrocanthosaurus atokensis (NCSM 14345) provides new information regarding the palatal complex and inner surfaces of the skull and mandible. Previously inaccessible internal views and articular surfaces of nearly every element of the skull are described. Twenty-four new morphological characters are identified as variable in Allosauroidea, combined with 153 previously published characters, and evaluated for eighteen terminal taxa. Systematic analysis of this dataset recovers a single most parsimonious topology placing Acrocanthosaurus atokensis as a member of Allosauroidea, in agreement with several recent analyses that nest the taxon well within Carcharodontosauridae.A revised diagnosis of Acrocanthosaurus atokensis finds that the species is distinguished by four primary characters, including: presence of a knob on the lateral surangular shelf; enlarged posterior surangular foramen; supraoccipital protruding as a double-boss posterior to the nuchal crest; and pneumatic recess within the medial surface of the quadrate. Furthermore, the recovered phylogeny more closely agrees with the stratigraphic record than hypotheses that place Acrocanthosaurus atokensis as more closely related to Allosaurus fragilis. Fitch optimization of body size is also more consistent with the placement of Acrocanthosaurus atokensis within a clade of larger carcharodontosaurid taxa than with smaller-bodied taxa near the base of Allosauroidea. This placement of Acrocanthosaurus atokensis supports previous hypotheses of a global carcharodontosaurid radiation during the Early Cretaceous

    Effects of the social environment on the survival and fungal resistance of ant brood

    Get PDF
    The phenotype of social animals can be influenced by genetic, maternal and environmental effects, which include social interactions during development. In social insects, the social environment and genetic origin of brood can each influence a whole suite of traits, from individual size to caste differentiation. Here, we investigate to which degree the social environment during development affects the survival and fungal resistance of ant brood of known maternal origin. We manipulated one component of the social environment, the worker/brood ratio, of brood originating from single queens of Formica selysi. We monitored the survival of brood and measured the head size and ability to resist the entomopathogenic fungus Beauveria bassiana of the resulting callow workers. The worker/brood ratio and origin of eggs affected the survival and maturation time of the brood and the size of the resulting callow workers. The survival of the callow workers varied greatly according to their origin, both in controls and when challenged with B. bassiana. However, there was no interaction between the fungal challenge and either the worker/brood ratio or origin of eggs, suggesting that these factors did not affect parasite resistance in the conditions tested. Overall, the social conditions during brood rearing and the origin of eggs had a strong impact on brood traits that are important for fitness. We detected a surprisingly large amount of variation among queens in the survival of their brood reared in standard queenless conditions, which calls for further studies on genetic, maternal and social effects influencing brood development in the social insects

    Sagittal spinopelvic alignment and body mass index in patients with degenerative spondylolisthesis

    No full text
    The sagittal orientation and osteoarthritis of facet joints, paravertebral muscular dystrophy and loss of ligament strength represent mechanical factors leading to degenerative spondylolisthesis. The importance of sagittal spinopelvic imbalance has been described for the developmental spondylolisthesis with isthmic lysis. However, it remains unclear if these mechanisms play a role in the pathogenesis of degenerative spondylolisthesis. The purpose of this study was to analyze the sagittal spinopelvic alignment, the body mass index (BMI) and facet joint degeneration in degenerative spondylolisthesis. A group of 49 patients with L4–L5 degenerative spondylolisthesis (12 males, 37 females, average age 65.9 years) was compared to a reference group of 77 patients with low back pain without spondylolisthesis (41 males, 36 females, average age 65.5 years). The patient’s height and weight were assessed to calculate the BMI. The following parameters were measured on lateral lumbar radiographs in standing position: L1–S1 lordosis, segmental lordosis from L1–L2 to L5–S1, pelvic tilt, pelvic incidence and sacral slope. The sagittal orientation and the presence of osteoarthritis of the facet joints were determined from transversal plane computed tomography (CT). The average BMI was significantly higher (P = 0.030) in the spondylolisthesis group compared to the reference group (28.2 vs. 24.8) and 71.4% of the spondylolisthesis patients had a BMI > 25. The radiographic analysis showed a significant increase of the following parameters in spondylolisthesis: pelvic tilt (25.6° vs. 21.0°; P = 0.046), sacral slope (42.3° vs. 33.4°; P = 0.002), pelvic incidence (66.2° vs. 54.2°; P = 0.001), L1–S1 lordosis (57.2° vs. 49.6°; P = 0.045). The segmental lumbar lordosis was significantly higher (P < 0.05) at L1–L2 and L2–L3 in spondylolisthesis. The CT analysis of L4–L5 facet joints showed a sagittal orientation in the spondylolisthesis group (36.5° vs. 44.4°; P = 0.001). The anatomic orientation of the pelvis with a high incidence and sacral slope seems to represent a predisposing factor for degenerative spondylolisthesis. Although the L1–S1 lordosis keeps comparable to the reference group, the increase of pelvic tilt suggests a posterior tilt of the pelvis as a compensation mechanism in patients with high pelvic incidence. The detailed analysis of segmental lordosis revealed that the lordosis increased at the levels above the spondylolisthesis, which might subsequently increase posterior stress on facet joints. The association of overweight and a relatively vertical inclination of the S1 endplate is predisposing for an anterior translation of L4 on L5. Furthermore, the sagittally oriented facet joints do not retain this anterior vertebral displacement

    Interactive GPU active contours for segmenting inhomogeneous objects

    Get PDF
    We present a segmentation software package primarily targeting medical and biological applications, with a high level of visual feedback and several usability enhancements over existing packages. Specifically, we provide a substantially faster GPU implementation of the local Gaussian distribution fitting energy model, which can segment inhomogeneous objects with poorly defined boundaries as often encountered in biomedical images. We also provide interactive brushes to guide the segmentation process in a semiautomated framework. The speed of our implementation allows us to visualize the active surface in real time with a built-in ray tracer, where users may halt evolution at any time step to correct implausible segmentation by painting new blocking regions or new seeds. Quantitative and qualitative validation is presented, demonstrating the practical efficacy of our interactive elements for a variety of real-world datasets
    corecore