14 research outputs found

    Properties of Grin Materials

    No full text

    Dimeric IgG complexes from IVIg are incapable of inducing in vitro neutrophil degranulation or complement activation

    Get PDF
    Purpose Intravenous immunoglobulin (IVIg) products contain various amounts of dimeric IgG complexes. Current insights into the possible biological activities of these dimers remain controversial, and both immunemodulating and immune-activating effects have been reported. Here, we analyzed the putative immune-activating effects of dimers isolated from IVIg. Methods Dimers isolated from IVIg were purified by high-performance size-exclusion chromatography (HP-SEC) and tested for the ability to induce neutrophil degranulation in vitro. Results Dimers isolated from IVIg were found to be incapable of inducing in vitro neutrophil degranulation or complement activation, even at concentrations exceeding those expected to be reached upon administration in patients. These results depend on the removal of artefactual activation by using 0.1 micron filtration and the use of poloxamer to prevent adsorption of IgG onto the solid phase. Conclusions The data suggest dimeric IgG found in IVIg may bind to Fc-receptors without causing activation

    The role of free oxygen radicals in the expulsion of primary infections ofNippostrongylus brasiliensis

    No full text

    Hyperinflammation in chronic granulomatous disease and anti-inflammatory role of the phagocyte NADPH oxidase

    No full text
    Chronic granulomatous disease (CGD) is an immunodeficiency caused by the lack of the superoxide-producing phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. However, CGD patients not only suffer from recurrent infections, but also present with inflammatory, non-infectious conditions. Among the latter, granulomas figure prominently, which gave the name to the disease, and colitis, which is frequent and leads to a substantial morbidity. In this paper, we systematically review the inflammatory lesions in different organs of CGD patients and compare them to observations in CGD mouse models. In addition to the more classical inflammatory lesions, CGD patients and their relatives have increased frequency of autoimmune diseases, and CGD mice are arthritis-prone. Possible mechanisms involved in CGD hyperinflammation include decreased degradation of phagocytosed material, redox-dependent termination of proinflammatory mediators and/or signaling, as well as redox-dependent cross-talk between phagocytes and lymphocytes (e.g. defective tryptophan catabolism). As a conclusion from this review, we propose the existence of ROS high and ROS low inflammatory responses, which are triggered as a function of the level of reactive oxygen species and have specific characteristics in terms of physiology and pathophysiology
    corecore