18 research outputs found

    Theory of Coexistence of Superconductivity and Ferroelectricity : A Dynamical Symmetry Model

    Full text link
    We propose and investigate a model for the coexistence of Superconductivity (SC) and Ferroelectricity (FE) based on the dynamical symmetries su(2)su(2) for the pseudo-spin SC sector, h(4)h(4) for the displaced oscillator FE sector, and su(2)⊗h(4)su(2) \otimes h(4) for the composite system. We assume a minimal symmetry-allowed coupling, and simplify the hamiltonian using a double mean field approximation (DMFA). A variational coherent state (VCS) trial wave-function is used for the ground state: the energy, and the relevant order parameters for SC and FE are obtained. For positive sign of the SC-FE coupling coefficient, a non-zero value of either order parameter can suppress the other (FE polarization suppresses SC and vice versa). This gives some support to "Matthias' Conjecture" [1964], that SC and FE tend to be mutually exclusive. For such a Ferroelectric Superconductor we predict: a) the SC gap Δ\Delta (and TcT_c ) will increase with increasing applied pressure when pressure quenches FE as in many ferroelectrics, and b) the FE polarization will increase with increaesing magnetic field up to HcH_c . The last result is equivalent to the prediction of a new type of Magneto-Electric Effect in a coexistent SC-FE material. Some discussion will be given of the relation of these results to the cuprate superconductors.Comment: 46 page

    Observation of the Ankle and Evidence for a High-Energy Break in the Cosmic Ray Spectrum

    Full text link
    We have measured the cosmic ray spectrum at energies above 101710^{17} eV using the two air fluorescence detectors of the High Resolution Fly's Eye experiment operating in monocular mode. We describe the detector, PMT and atmospheric calibrations, and the analysis techniques for the two detectors. We fit the spectrum to models describing galactic and extragalactic sources. Our measured spectrum gives an observation of a feature known as the ``ankle'' near 3×10183\times 10^{18} eV, and strong evidence for a suppression near 6×10196\times 10^{19} eV.Comment: 14 pages, 9 figures. To appear in Physics Letters B. Accepted versio

    Genetic mapping and quantitative trait loci analysis for disease resistance using F 2 and F 5 Generation‐based genetic maps derived from ‘Tifrunner’ × ‘GT‐C20’ in peanut

    Get PDF
    One mapping population derived from Tifrunner × GT-C20 has shown great potential in developing a high density genetic map and identifying quantitative trait loci (QTL) for important disease resistance, tomato spotted wilt virus (TSWV) and leaf spot (LS). Both F2 and F5 generation-based genetic maps were previously constructed with 318 and 239 marker loci, respectively. Higher map density could be achieved with the F2 map (5.3 cM per locus) as compared to the F5 (5.7 cM per locus). Quantitative trait loci analysis using multi-environment phenotyping data from F8 and higher generations for disease resistance identified 54 QTL in the F2 map including two QTL for thrips (12.14–19.43% phenotypic variation explained [PVE]), 15 for TSWV (4.40–34.92% PVE), and 37 for LS (6.61–27.35% PVE). Twenty-three QTL could be identified in the F5 map including one QTL for thrips (5.86% PVE), nine for TSWV (5.20–14.14% PVE), and 13 for LS (5.95–21.45% PVE). Consistent QTL identified in each map have shown higher phenotypic variance than nonconsistent QTL. As expected, the number of QTL and their estimates of phenotypic variance were lower in the F5 map. This is the first QTL study reporting novel QTL for thrips, TSWV, and LS in peanut (Arachis hypogaea L.), and therefore, future studies will be conducted to refine these QTL

    Identifying and developing maize germplasm with resistance to accumulation of aflatoxins

    No full text
    Special Issue: aflatoxins in and other cropsEfforts to identify maize germplasm with resistance to Aspergillus flavus infection and subsequent accumulation of aflatoxins were initiated by the US Department of Agriculture, Agricultural Research Service at several locations in the late 1970s and early 1980s. Research units at four locations in the south-eastern USA are currently engaged in identification and development of maize germplasm with resistance to A. flavus infection and accumulation of aflatoxins. The Corn Host Plant Resistance Research Unit, Mississippi State, MS, developed procedures for screening germplasm for resistance to A. flavus infection and accumulation of aflatoxins. Mp313E, released in 1990, was the first line released as a source of resistance to A. flavus infection. Subsequently, germplasm lines Mp420, Mp715, Mp717, Mp718, and Mp719 were released as additional sources of resistance. Quantitative trait loci associated with resistance have also been identified in four bi-parental populations. The Crop Protection and Management Research Unit and Crop Genetics and Breeding Research Unit, Tifton, GA, created a breeding population GT-MAS:gk. GT601, GT602, and GT603 were developed from GT-MAS:gk. The Food and Feed Safety Research Unit, New Orleans, LA, in collaboration with the International Institute for Tropical Agriculture used a kernel screening assay to screen germplasm and develop six germplasm lines with resistance to aflatoxins. The Plant Science Research Unit, Raleigh, NC, through the Germplasm Enhancement of Maize (GEM) Project provides to co-operators diverse germplasm that is a valuable source of resistance to A. flavus infection and accumulation of aflatoxins in maiz

    Oxidative stress and carbon metabolism influence Aspergillus flavus transcriptome composition and secondary metabolite production

    Get PDF
    Contamination of crops with aflatoxin is a serious global threat to food safety. Aflatoxin production by Aspergillus flavus is exacerbated by drought stress in the field and by oxidative stress in vitro. We examined transcriptomes of three toxigenic and three atoxigenic isolates of A. flavus in aflatoxin conducive and non-conducive media with varying levels of H2O2 to investigate the relationship of secondary metabolite production, carbon source, and oxidative stress. We found that toxigenic and atoxigenic isolates employ distinct mechanisms to remediate oxidative damage, and that carbon source affected the isolates’ expression profiles. Iron metabolism, monooxygenases, and secondary metabolism appeared to participate in isolate oxidative responses. The results suggest that aflatoxin and aflatrem biosynthesis may remediate oxidative stress by consuming excess oxygen and that kojic acid production may limit iron-mediated, non-enzymatic generation of reactive oxygen species. Together, secondary metabolite production may enhance A. flavus stress tolerance, and may be reduced by enhancing host plant tissue antioxidant capacity though genetic improvement by breeding selection

    Drought stress and aflatoxin contamination: transcriptional responses of Aspergillus flavus to oxidative stress are related to stress tolerance and aflatoxin production capability

    No full text
    Oilseed crops such as maize and peanut are staple food crops which are vital for global food security. The contamination of these crops with carcinogenic aflatoxins during infection by Aspergillus flavus under drought stress conditions is a serious threat to the safety of these commodities. In order to better understand the role of aflatoxin production in the biology of this pathogen under environmental stress, a collaborative transcriptome project was undertaken to examine the transcriptional responses of toxigenic and atoxigenic isolates of A. flavus to oxidative stress. Selected isolates were cultured in aflatoxin production-conducive and non-conducive media amended with varying levels of H2O2. Isolates which possessed greater tolerance to H2O2 stress and aflatoxin production capability exhibited fewer differentially expressed genes (DEGs) than those which possessed less tolerance and lower aflatoxin production. Primary metabolic mechanisms were also stimulated in response to stress along with antioxidant enzyme-encoding genes. Genes related to fungal development such as aminobenzoate degradation genes and conidiation regulators were also differentially expressed in response to stress. Secondary metabolite biosynthetic processes also formed a large component of the isolate responses to stress including those for aflatoxin, aflatrem, and kojic acid. Co-expression analyses also showed that aflatoxin biosynthetic gene expression along with antioxidant genes were highly correlated with toxigenic isolate biomass under variable stresses. These results along with others in the literature suggest that the production of these secondary metabolites may provide supplemental oxidative stress alleviation. Additional data validation using proteomics, metabolomics and whole genome resequencing (WGRS) approaches will also be discussed

    Transcriptional responses of toxigenic and atoxigenic isolates of Aspergillus flavus to oxidative stress in aflatoxin-conducive and non-conducive media

    No full text
    Aflatoxin production by isolates of Aspergillus flavus varies, ranging from highly toxigenic to completely atoxigenic. Several mechanisms have been identified which regulate aflatoxin production including medium carbon source and oxidative stress. In recent studies, aflatoxin production has been implicated in partially ameliorating oxidative stress in A. flavus. To better understand the role of aflatoxin production in oxidative stress responses, a selection of toxigenic and atoxigenic isolates of A. flavus with moderate to high oxidative stress tolerance were exposed to increasing concentrations of H2O2 in both aflatoxin-conducive and non-conducive media. Mycelial mats were collected for global transcriptome sequencing followed by differential expression, functional prediction, and weighted co-expression analyses. Oxidative stress and medium carbon source had a significant effect on the expression of several secondary metabolite gene clusters including those for aflatoxin, aflatrem, aflavarin, cyclopiazonic acid, and kojic acid. Atoxigenic biological control isolates showed less differential expression under stress than other atoxigenic isolates suggesting expression profiles may be useful in screening. Increasing stress also resulted in regulation of SakA/Hog1 and MpkA MAP kinase signalling pathways pointing to their potential roles in regulating oxidative stress responses. Their expression was also influenced by medium carbon source. These results suggest that aflatoxin production along with that of other mycotoxins may occur as part of a concerted coping mechanism for oxidative stress and its effects in the environment. This mechanism is also regulated by availability of simple sugars and glycolytic compounds for their biosynthesis
    corecore