21 research outputs found

    Polarized Endocytosis of the Keratinocyte Growth Factor Receptor in Migrating Cells: Role of Src-Signaling and Cortactin

    Get PDF
    Cell migration is a physiological process that requires endocytic trafficking and polarization of adhesion molecules and receptor tyrosine kinases (RTKs) to the leading edge. Many growth factors are able to induce motility by binding to specific RTK on target cells. Among them, keratinocyte growth factor (KGF or FGF7) and fibroblast growth factor 10 (FGF10), members of the FGF family, are motogenic for keratinocytes, and exert their action by binding to the keratinocyte growth factor receptor (KGFR), a splicing variant of FGFR2, exclusively expressed on epithelial cells. Here we analyzed the possible role of cortactin, an F-actin binding protein which is tyrosine phosphorylated by Src and is involved in KGFR-mediated cell migration, in the KGFR endocytosis and polarization to the leading edge of migrating cells upon ligand-induced stimulation. Biochemical phosphorylation study revealed that both KGF and FGF10 were able to induce tyrosine phosphorylation of Src and in turn of cortactin, as demonstrated by using the specific pharmacological Src-inhibitor SU6656, although FGF10 effect was delayed with respect to that promoted by KGF. Immunofluorescence analysis demonstrated the polarized localization of KGFR upon ligand stimulation to the leading edge of migrating keratinocytes, process that was regulated by Src. Moreover, we showed that the colocalization of cortactin with KGFR at the plasma membrane protrusions and on early endosomes after KGF and FGF10 treatment was Src-dependent. Further, by using a RNA interference approach through microinjection, we showed that cortactin is required for KGFR endocytosis and that the clathrin-dependent internalization of the receptor is a critical event for its polarization. Finally, KGFR expression and polarization enhanced cell migration in a scratch assay. Our results indicate that both Src and cortactin play a key role in the KGFR endocytosis and polarization at the leading edge of migrating keratinocytes, supporting the crucial involvement of RTK trafficking in cell motility

    Extracorporeal Shock Wave Treatment (ESWT) enhances the in vitro-induced differentiation of human tendon-derived stem/progenitor cells (hTSPCs)

    Get PDF
    Extracorporeal shock wave therapy (ESWT) is a non-invasive and innovative technology for the management of specific tendinopathies. In order to elucidate the ESWT-mediated clinical benefits, human Tendon-derived Stem/Progenitor cells (hTSPCs) explanted from 5 healthy semitendinosus (ST) and 5 ruptured Achilles (AT) tendons were established. While hTSPCs from the two groups showed similar proliferation rates and stem cell surface marker profiles, we found that the clonogenic potential was maintained only in cells derived from healthy donors. Interestingly, ESWT significantly accelerated hTSPCs differentiation, suggesting that the clinical benefits of ESWT may be ascribed to increased efficiency of tendon repair after injury

    Chronic heart failure is characterized by altered mitochondrial function and structure in circulating leucocytes

    Get PDF
    Oxidative stress is currently viewed as a key factor in the genesis and progression of Heart Failure (HF). The aim of this study was to characterize the mitochondrial changes linked to oxidative stress generation in circulating peripheral blood mononuclear cells isolated from chronic HF patients (HF_PBMCs) in order to highlight the involvement of mitochondrial dysfunction in the pathophysiology of HF. To assess the production of reactive oxygen species (ROS), mitochondrial function and ultrastructure and the mitophagic flux in circulating PBMCs we enrolled 15 patients with HF and a control group of ten healthy subjects. The HF_PBMCs showed a mitochondrial population consisting of damaged and less functional organelles responsible of higher superoxide anion production both at baseline and under in vitro stress conditions, with evidence of cellular apoptosis. Although the mitophagic flux at baseline was enhanced in HF_PBMCs at level similar to those that could be achieved in control PBMCs only under inflammatory stress conditions, the activation of mitophagy was unable to preserve a proper mitochondrial dynamics upon stress stimuli in HF. In summary, circulating HF_PBMCs show structural and functional derangements of mitochondria with overproduction of reactive oxidant species. This mitochondrial failure sustains a leucocyte dysfunctional status in the blood that may contribute to development and persistence of stress conditions within the cardiovascular system in HF

    In vitro characterization of mitochondrial function and structure in rat and human cells with a deficiency of the NADH:ubiquinone oxidoreductase Ndufc2 subunit

    Get PDF
    Ndufc2, a subunit of the NADH:ubiquinone oxidoreductase, plays a key role in the assembly and activity of complex I within the mitochondrial OXPHOS chain. Its deficiency has been shown to be involved in diabetes, cancer and stroke. To improve our knowledge on the mechanisms underlying the increased disease risk due to Ndufc2 reduction, we performed the present in vitro study aimed at the fine characterization of the derangements in mitochondrial structure and function consequent to Ndufc2 deficiency. We found that both fibroblasts obtained from skin of heterozygous Ndufc2 knock-out rat model showed marked mitochondrial dysfunction and PBMC obtained from subjects homozygous for the TT genotype of the rs11237379/NDUFC2 variant, previously shown to associate with reduced gene expression, demonstrated increased generation of reactive oxygen species and mitochondrial damage. The latter was associated with increased oxidative stress and significant ultrastructural impairment of mitochondrial morphology with a loss of internal cristae. In both models the exposure to stress stimuli, such as high-NaCl concentration or LPS, exacerbated the mitochondrial damage and dysfunction. Resveratrol significantly counteracted the ROS generation. These findings provide additional insights on the role of an altered pattern of mitochondrial structure-function as a cause of human diseases. In particular, they contribute to underscore a potential genetic risk factor for cardiovascular diseases, including stroke

    Expression and signaling of the tyrosine kinase FGFR2b/KGFR regulates phagocytosis and melanosome uptake in human keratinocytes

    No full text
    Membrane and actin cytoskeleton dynamics during phagocytosis can be triggered and amplified by the signal transduction of receptor tyrosine kinases. The epidermal keratinocytes appear to use the phagocytic mechanism of uptake to ingest melanosomes released by the melanocytes and play a pivotal role in the transfer process. We have previously demonstrated that the keratinocyte growth factor KGF/FGF7 promotes the melanosome uptake through activation of its receptor tyrosine kinase FGFR2b/KGFR. The aim of the present study was to investigate the contribution of KGFR expression, activation, and signaling in regulating the phagocytic process and the melanosome transfer. Phagocytosis was analyzed in vitro using fluorescent latex beads on human keratinocytes induced to differentiate. Melanosome transfer was investigated in keratinocyte-melanocyte cocultures. KGFR depletion by small interfering RNA microinjection and overexpression by transfection of wild type or defective mutant KGFR were performed to demonstrate the direct effect of the receptor on phagocytosis and melanosome transfer. Colocalization of the phagocytosed beads with the internalized receptors in phagolysosomes was analyzed by optical sectioning and 3-dimensional reconstruction. KGFR ligands triggered phagocytosis and melanosome transfer in differentiated keratinocytes, and receptor kinase activity and signaling were required for these effects, suggesting that FGFR2b/KGFR expression/activity and PLC gamma signaling pathway play crucial roles in phagocytosis.-Belleudi, F., Purpura, V., Scrofani, C., Persechino, F., Leone, L., and Torrisi, M. R. Expression and signaling of the tyrosine kinase FGFR2b/KGFR regulates phagocytosis and melanosome uptake in human keratinocytes. FASEB J. 25, 170-181 (2011). www.fasebj.or

    HPV16 E5 affects the KGFR/FGFR2b-mediated epithelial growth through alteration of the receptor expression, signaling and endocytic traffic

    No full text
    The E5 oncoprotein of the human papillomavirus type 16 (HPV16 E5) cooperates in cervical carcinogenesis and in epithelial transformation deregulating cell growth, survival and differentiation through the modulation of growth factor receptors. Among the epithelial receptor tyrosine kinases, the keratinocyte growth factor receptor/fibroblast growth factor receptor 2b (KGFR/FGFR2b) is a major paracrine mediator of epithelial homeostasis and appears to have an unique and unusual role in epithelial tissues, exerting a tumor-suppressive function in vitro and in vivo. With the aim to better elucidate the molecular events involved in the pathological activity of 16E5, we investigated if the viral protein would be able to affect the KGFR expression, signaling and turnover by interference with its degradative and recycling endocytic pathways. Quantitative reverse transcriptase-PCR and biochemical approaches on human keratinocytes transfected with 16E5-HA showed that E5 protein is able to induce KGFR down-modulation at both transcript and protein levels. Immunofluorescence microscopy in double-transfected cells expressing both E5 and KGFR revealed that the viral protein alters the receptor endocytic trafficking and triggers its endosomal sorting to the indirect juxtanuclear recycling pathway. The shift from lysosomal degradation to recycling at the plasma membrane correlates with a reduced phosphorylation of the fibroblast growth factor receptor substrate-2α tyrosine 196, the major docking site for Grb2-Cbl complexes responsible for receptor ubiquitination and degradation. 5'-Bromo-deoxyuridine incorporation assay demonstrated that expression of 16E5 induces a decrease in the growth response to the receptor ligands as a consequence of KGFR down-modulation, suggesting that 16E5 might have a role on HPV infection in perturbing the KGFR-mediated physiological behavior of confluent keratinocytes committed to differentiation

    Cholesteatoma-associated fibroblasts modulate epithelial growth and differentiation through KGF/FGF7 secretion

    Get PDF
    The keratinocyte growth factor (KGF/FGF7), produced by stromal cells, is a key paracrine mediator of epithelial proliferation, differentiation and migration. Expression of the growth factor is increased in wound healing and in hyperproliferative epithelial diseases, as a consequence of the activation of dermal fibroblasts by the inflammatory microenvironment. The middle ear cholesteatoma, an aural epidermal pathology characterized by keratinocyte hyperproliferation and chronic inflammation, may represent a model condition to study the epithelial-mesenchymal interactions. To develop an in vitro model for this disease, we isolated and characterized human primary cultures of fibroblasts associated with the cholesteatoma lesion, analyzing their secretory behaviour and degree of differentiation or activation. Compared to the perilesional or control normal fibroblasts, all cultures derived from cholesteatoma tissues were less proliferating and more differentiated and their highly variable activated phenotype correlated with the secretion of KGF as well as of metalloproteases 2 and 9. Culture supernatants collected from the cholesteatoma-associated fibroblasts were able to increase the proliferation and differentiation of human keratinocytes assessed by the expression of Ki67 and keratin-1 markers. The single crucial contribution of the KGF released by fibroblasts on the keratinocyte biological response was shown by the specific, although partial, block induced by inhibiting the KGF receptor or by immunoneutralizing the growth factor. Altogether, these results suggest that the activation of the stromal fibroblasts present in the pathological tissue, and the consequent increased secretion of KGF, play a crucial role in the deregulation of the epidermal proliferation and differentiation

    The KGFR polarization is dependent on receptor endocytosis.

    No full text
    <p>HaCaT KGFR cells were incubated at 4°C with the anti-Bek polyclonal antibodies to selectively stain the plasma membrane receptors and exclusively follow them during endocytosis, and then stimulated with KGF or with FGF10 for 5, 10 and 30 minutes at 37°C. The plasma membrane was decorated with the plasma membrane marker WGA-FITC. KGFR staining appears continuous and uniformly distributed on the cell surface of untreated cells, discontinuous on the plasma membrane and in some intracellular dots underlying the cell surface upon 5 minutes of KGF stimulation, and polarized at both the plasma membrane and in intracellular dots at the leading edge of migrating cells upon 10 and 30 minutes of KGF stimulation. After FGF10 stimulation the polarization appears delayed and evident only upon 30 minutes of treatment. The staining of the marker WGA appears uniformly distributed along the plasma membrane at all time points. Bars: 10 µm.</p
    corecore