1,934 research outputs found

    Symmetry energy, neutron skin, and neutron star radius from chiral effective field theory interactions

    Full text link
    We discuss neutron matter calculations based on chiral effective field theory interactions and their predictions for the symmetry energy, the neutron skin of 208 Pb, and for the radius of neutron stars.Comment: 7 pages, 8 figures, short review article, to appear in EPJA special issue on symmetry energ

    Chiral interactions up to next-to-next-to-next-to-leading order and nuclear saturation

    Full text link
    We present an efficient Monte Carlo framework for perturbative calculations of infinite nuclear matter based on chiral two-, three-, and four-nucleon interactions. The method enables the incorporation of all many-body contributions in a straightforward and transparent way, and makes it possible to extract systematic uncertainty estimates by performing order-by-order calculations in the chiral expansion as well as the many-body expansion. The versatility of this new framework is demonstrated by applying it to chiral low-momentum interactions, exhibiting a very good many-body convergence up to fourth order. Following these benchmarks, we explore new chiral interactions up to next-to-next-to-next-to-leading order (N3^3LO). Remarkably, simultaneous fits to the triton and to saturation properties can be achieved, while all three-nucleon low-energy couplings remain natural. The theoretical uncertainties of nuclear matter are significantly reduced when going from next-to-next-to-leading order to N3^3LO.Comment: published version, incl. supplemental materia

    In-Medium Similarity Renormalization Group for Nuclei

    Full text link
    We present a new ab-initio method that uses similarity renormalization group (SRG) techniques to continuously diagonalize nuclear many-body Hamiltonians. In contrast with applications of the SRG to two- and three-nucleon interactions in free space, we perform the SRG evolution "in medium" directly in the AA-body system of interest. The in-medium approach has the advantage that one can approximately evolve 3,...,A3,...,A-body operators using only two-body machinery based on normal-ordering techniques. The method is nonperturbative and can be tailored to problems ranging from the diagonalization of closed-shell nuclei to the construction of effective valence shell-model Hamiltonians and operators. We present first results for the ground-state energies of 4^4He, 16^{16}O and 40^{40}Ca, which have accuracies comparable to coupled-cluster calculations.Comment: 4pages, 4 figures, to be published in PR

    Low-momentum interactions for nuclei

    Full text link
    We show how the renormalization group is used to construct a low-momentum nucleon-nucleon interaction V_{low k}, which unifies all potential models used in nuclear structure calculations. V_{low k} can be directly applied to the nuclear shell model or to nucleonic matter without a G matrix resummation. It is argued that V_{low k} parameterizes a high-order chiral effective field theory two-nucleon force. We use cutoff dependence as a tool to assess the error in the truncation of nuclear forces to two-nucleon interactions and introduce a low-momentum three-nucleon force, which regulates A=3,4 binding energies. The adjusted three-nucleon interaction is perturbative for small cutoffs. In contrast to other precision interactions, the error due to missing many-body forces can be estimated, when V_{low k} and the corresponding three-nucleon force are used in nuclear structure calculations and the cutoff is varied.Comment: 10 pages, 5 figures, talk at INT workshop on Nuclear Forces and the Quantum Many-Body Problem, Seattle, October 200

    Neutron matter at next-to-next-to-next-to-leading order in chiral effective field theory

    Full text link
    Neutron matter presents a unique system for chiral effective field theory (EFT), because all many-body forces among neutrons are predicted to next-to-next-to-next-to-leading order (N3LO). We present the first complete N3LO calculation of the neutron matter energy. This includes the subleading three-nucleon (3N) forces for the first time and all leading four-nucleon (4N) forces. We find relatively large contributions from N3LO 3N forces. Our results provide constraints for neutron-rich matter in astrophysics with controlled theoretical uncertainties.Comment: 5 pages, 4 figures; improved version, 3N ring and 2pi-contact contributions corrected, conclusions unchanged; v3: minor changes, published versio

    Neutron matter from chiral two- and three-nucleon calculations up to N3^3LO

    Full text link
    Neutron matter is an ideal laboratory for nuclear interactions derived from chiral effective field theory since all contributions are predicted up to next-to-next-to-next-to-leading order (N3^3LO) in the chiral expansion. By making use of recent advances in the partial-wave decomposition of three- nucleon (3N) forces, we include for the first time N3^3LO 3N interactions in many-body perturbation theory (MBPT) up to third order and in self-consistent Green's function theory (SCGF). Using these two complementary many-body frameworks we provide improved predictions for the equation of state of neutron matter at zero temperature and also analyze systematically the many-body convergence for different chiral EFT interactions. Furthermore, we present an extension of the normal-ordering framework to finite temperatures. These developments open the way to improved calculations of neutron-rich matter including estimates of theoretical uncertainties for astrophysical applications.Comment: minor changes, published versio

    From low-momentum interactions to nuclear structure

    Full text link
    We present an overview of low-momentum two-nucleon and many-body interactions and their use in calculations of nuclei and infinite matter. The softening of phenomenological and effective field theory (EFT) potentials by renormalization group (RG) transformations that decouple low and high momenta leads to greatly enhanced convergence in few- and many-body systems while maintaining a decreasing hierarchy of many-body forces. This review surveys the RG-based technology and results, discusses the connections to chiral EFT, and clarifies various misconceptions.Comment: 76 pages, 57 figures, two figures updated, published versio

    Neutron matter from chiral effective field theory interactions

    Full text link
    The neutron-matter equation of state constrains the properties of many physical systems over a wide density range and can be studied systematically using chiral effective field theory (EFT). In chiral EFT, all many-body forces among neutrons are predicted to next-to-next-to-next-to-leading order (N3LO). We present details and additional results of the first complete N3LO calculation of the neutron-matter energy, which includes the subleading three-nucleon as well as the leading four-nucleon forces, and provides theoretical uncertainties. In addition, we discuss the impact of our results for astrophysics: for the supernova equation of state, the symmetry energy and its density derivative, and for the structure of neutron stars. Finally, we give a first estimate for the size of the N3LO many-body contributions to the energy of symmetric nuclear matter, which shows that their inclusion will be important in nuclear structure calculations.Comment: published version; 21 pages, 11 figures, 5 table
    • …
    corecore