687 research outputs found

    Gyroid cuticular structures in butterfly wing scales: biological photonic crystals

    Get PDF
    We present a systematic study of the cuticular structure in the butterfly wing scales of some papilionids (Parides sesostris and Teinopalpus imperialis) and lycaenids (Callophrys rubi, Cyanophrys remus, Mitoura gryneus and Callophrys dumetorum). Using published scanning and transmission electron microscopy (TEM) images, analytical modelling and computer-generated TEM micrographs, we find that the three-dimensional cuticular structures can be modelled by gyroid structures with various filling fractions and lattice parameters. We give a brief discussion of the formation of cubic gyroid membranes from the smooth endoplasmic reticulum in the scale's cell, which dry and harden to leave the cuticular structure behind when the cell dies. The scales of C. rubi are a potentially attractive biotemplate for producing three-dimensional optical photonic crystals since for these scales the cuticle-filling fraction is nearly optimal for obtaining the largest photonic band gap in a gyroid structure

    GTI-space : the space of generalized topological indices

    Get PDF
    A new extension of the generalized topological indices (GTI) approach is carried out torepresent 'simple' and 'composite' topological indices (TIs) in an unified way. Thisapproach defines a GTI-space from which both simple and composite TIs represent particular subspaces. Accordingly, simple TIs such as Wiener, Balaban, Zagreb, Harary and Randićconnectivity indices are expressed by means of the same GTI representation introduced for composite TIs such as hyper-Wiener, molecular topological index (MTI), Gutman index andreverse MTI. Using GTI-space approach we easily identify mathematical relations between some composite and simple indices, such as the relationship between hyper-Wiener and Wiener index and the relation between MTI and first Zagreb index. The relation of the GTI space with the sub-structural cluster expansion of property/activity is also analysed and some routes for the applications of this approach to QSPR/QSAR are also given

    Biomechanical factors in the progression of idiopathic scoliosis

    Full text link
    Idiopathic scoliosis is present when, in upright positions of the trunk, the spine curves to the side for unknown reasons. This paper reviews evidence concerning some biomechanical factors that might underlie the progression of such curves. The review concentrates on studies conducted in our laboratories. Arguments are made, based on biomechanical analyses and experiments, that progression occurs because of defects in the postural control system of the spine.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43994/1/10439_2006_Article_BF02371453.pd

    Concentration Dependence of Superconductivity and Order-Disorder Transition in the Hexagonal Rubidium Tungsten Bronze RbxWO3. Interfacial and bulk properties

    Full text link
    We revisited the problem of the stability of the superconducting state in RbxWO3 and identified the main causes of the contradictory data previously published. We have shown that the ordering of the Rb vacancies in the nonstoichiometric compounds have a major detrimental effect on the superconducting temperature Tc.The order-disorder transition is first order only near x = 0.25, where it cannot be quenched effectively and Tc is reduced below 1K. We found that the high Tc's which were sometimes deduced from resistivity measurements, and attributed to compounds with .25 < x < .30, are to be ascribed to interfacial superconductivity which generates spectacular non-linear effects. We also clarified the effect of acid etching and set more precisely the low-rubidium-content boundary of the hexagonal phase.This work makes clear that Tc would increase continuously (from 2 K to 5.5 K) as we approach this boundary (x = 0.20), if no ordering would take place - as its is approximately the case in CsxWO3. This behaviour is reminiscent of the tetragonal tungsten bronze NaxWO3 and asks the same question : what mechanism is responsible for this large increase of Tc despite the considerable associated reduction of the electron density of state ? By reviewing the other available data on these bronzes we conclude that the theoretical models which are able to answer this question are probably those where the instability of the lattice plays a major role and, particularly, the model which call upon local structural excitations (LSE), associated with the missing alkali atoms.Comment: To be published in Physical Review

    A numerical study of multi-soliton configurations in a doped antiferromagnetic Mott insulator

    Full text link
    We evaluate from first principles the self-consistent Hartree-Fock energies for multi-soliton configurations in a doped, spin-1/2, antiferromagnetic Mott insulator on a two-dimensional square lattice. We find that nearest-neighbor Coulomb repulsion stabilizes a regime of charged meron-antimeron vortex soliton pairs over a region of doping from 0.05 to 0.4 holes per site for intermediate coupling 3 < U/t <8. This stabilization is mediated through the generation of ``spin-flux'' in the mean-field antiferromagnetic (AFM) background. Holes cloaked by a meron-vortex in the spin-flux AFM background are charged bosons. Our static Hartree-Fock calculations provide an upper bound on the energy of a finite density of charged vortices. This upper bound is lower than the energy of the corresponding charged stripe configurations. A finite density of charge carrying vortices is shown to produce a large number of unoccupied electronic levels in the Mott-Hubbard charge transfer gap. These levels lead to significant band tailing and a broad mid-infrared band in the optical absorption spectrum as observed experimentally. At very low doping (below 0.05) the doping charges create extremely tightly bound meron-antimeron pairs or even isolated conventional spin-polarons, whereas for very high doping (above 0.4) the spin background itself becomes unstable to formation of a conventional Fermi liquid and the spin-flux mean-field is energetically unfavorable. Our results point to the predominance of a quantum liquid of charged, bosonic, vortex solitons at intermediate coupling and intermediate doping concentrations.Comment: 12 pages, 25 figures; added references, modified/eliminated some figure

    Unravelling the temporal association between lameness and body condition score in dairy cattle using a multistate modelling approach

    Get PDF
    Recent studies have reported associations between lameness and body condition score (BCS) in dairy cattle, however the impact of change in the dynamics of BCS on both lameness occurrence and recovery is currently unknown. The aim of this study was to investigate in a longitudinal study the effect of change in BCS on the transitions from the non-lame to lame, and lame to non-lame states. A total of 731 cows with 6889 observations from 4 UK herds were included in the study. Mobility score (MS) and body condition score (BCS) were recorded every 13-15 days from July 2010 until December 2011. A multilevel multistate discrete time event history model was built to investigate the transition of lameness over time. There were 1042 non-lame episodes and 593 lame episodes of which approximately 50% (519/1042) of the non-lame episodes transitioned to the lame state and 81% (483/593) of the lame episodes ended with a transition to the non-lame state. Cows with a lower BCS at calving (BCS Group 1 (1.00-1.75) and Group 2 (2.00-2.25)) had a higher probability of transition from non-lame to lame and a lower probability of transition from lame to non-lame compared to cows with BCS 2.50-2.75 i.e. they were more likely to become lame and if lame, they were less likely to recover. Similarly, cows who suffered a greater decrease in BCS (compared to their BCS at calving) had a higher probability of becoming lame and a lower probability of recovering in the next 15 days. An increase in BCS from calving was associated with the converse effect i.e. a lower probability of cows moving from the non-lame to the lame state and higher probability of transition from lame to non-lame. Days of lactation, months of calving and parity was associated with both lame and non-lame transitions and there was evidence of heterogeneity among cows in lameness occurrence and recovery. This study suggests loss of BCS and increase of BCS could influence the risk of becoming lame and the chance of recovery from lameness. Regular monitoring and maintenance of BCS on farms could be a key tool for reducing lameness. Further work is urgently needed in this area to allow a better understanding of the underlying mechanisms behind these relationships

    Onset of magnetism in B2 transition metals aluminides

    Full text link
    Ab initio calculation results for the electronic structure of disordered bcc Fe(x)Al(1-x) (0.4<x<0.75), Co(x)Al(1-x) and Ni(x)Al(1-x) (x=0.4; 0.5; 0.6) alloys near the 1:1 stoichiometry, as well as of the ordered B2 (FeAl, CoAl, NiAl) phases with point defects are presented. The calculations were performed using the coherent potential approximation within the Korringa-Kohn-Rostoker method (KKR-CPA) for the disordered case and the tight-binding linear muffin-tin orbital (TB-LMTO) method for the intermetallic compounds. We studied in particular the onset of magnetism in Fe-Al and Co-Al systems as a function of the defect structure. We found the appearance of large local magnetic moments associated with the transition metal (TM) antisite defect in FeAl and CoAl compounds, in agreement with the experimental findings. Moreover, we found that any vacancies on both sublattices enhance the magnetic moments via reducing the charge transfer to a TM atom. Disordered Fe-Al alloys are ferromagnetically ordered for the whole range of composition studied, whereas Co-Al becomes magnetic only for Co concentration >0.5.Comment: 11 pages with 9 embedded postscript figures, to be published in Phys.Rev.

    Monte Carlo Methods for Estimating Interfacial Free Energies and Line Tensions

    Full text link
    Excess contributions to the free energy due to interfaces occur for many problems encountered in the statistical physics of condensed matter when coexistence between different phases is possible (e.g. wetting phenomena, nucleation, crystal growth, etc.). This article reviews two methods to estimate both interfacial free energies and line tensions by Monte Carlo simulations of simple models, (e.g. the Ising model, a symmetrical binary Lennard-Jones fluid exhibiting a miscibility gap, and a simple Lennard-Jones fluid). One method is based on thermodynamic integration. This method is useful to study flat and inclined interfaces for Ising lattices, allowing also the estimation of line tensions of three-phase contact lines, when the interfaces meet walls (where "surface fields" may act). A generalization to off-lattice systems is described as well. The second method is based on the sampling of the order parameter distribution of the system throughout the two-phase coexistence region of the model. Both the interface free energies of flat interfaces and of (spherical or cylindrical) droplets (or bubbles) can be estimated, including also systems with walls, where sphere-cap shaped wall-attached droplets occur. The curvature-dependence of the interfacial free energy is discussed, and estimates for the line tensions are compared to results from the thermodynamic integration method. Basic limitations of all these methods are critically discussed, and an outlook on other approaches is given
    corecore