9,619 research outputs found

    S190 interpretation techniques development and application to New York State water resources

    Get PDF
    The author has identified the following significant results. The program has demonstrated that Skylab imagery can be utilized to regularly monitor eutrophication indices of lakes, such as chlorophyll concentration and photic zone depth. The relationship between the blue to green reflectance ratio and chlorophyll concentration was shown, along with changes in lake properties caused by chlorophyll, lignin, and humic acid using reflectance ratios and changes. A data processing technique was developed for detecting atmospheric fluctuations occurring over a large lake

    Evidence of polariton induced transparency in a single organic quantum wire

    Full text link
    The resonant interaction between quasi-one dimensional excitons and photons is investigated. For a single isolated organic quantum wire, embedded in its single crystal monomer matrix, the strong exciton-photon coupling regime is reached. This is evidenced by the suppression of the resonant excitonic absorption arising when the system eigenstate is a polariton. These observations demonstrate that the resonant excitonic absorption in a semiconductor can be understood in terms of a balance between the exciton coherence time and the Rabi period between exciton-like and photon-like states of the polariton.Comment: 9 pages and 4 figure

    The global electroweak fit at NNLO and prospects for the LHC and ILC

    Get PDF
    For a long time, global fits of the electroweak sector of the Standard Model (SM) have been used to exploit measurements of electroweak precision observables at lepton colliders (LEP, SLC), together with measurements at hadron colliders (Tevatron, LHC), and accurate theoretical predictions at multi-loop level, to constrain free parameters of the SM, such as the Higgs and top masses. Today, all fundamental SM parameters entering these fits are experimentally determined, including information on the Higgs couplings, and the global fits are used as powerful tools to assess the validity of the theory and to constrain scenarios for new physics. Future measurements at the Large Hadron Collider (LHC) and the International Linear Collider (ILC) promise to improve the experimental precision of key observables used in the fits. This paper presents updated electroweak fit results using newest NNLO theoretical predictions, and prospects for the LHC and ILC. The impact of experimental and theoretical uncertainties is analysed in detail. We compare constraints from the electroweak fit on the Higgs couplings with direct LHC measurements, and examine present and future prospects of these constraints using a model with modified couplings of the Higgs boson to fermions and bosons.Comment: 26 pages, 9 figure

    Self-forces on extended bodies in electrodynamics

    Full text link
    In this paper, we study the bulk motion of a classical extended charge in flat spacetime. A formalism developed by W. G. Dixon is used to determine how the details of such a particle's internal structure influence its equations of motion. We place essentially no restrictions (other than boundedness) on the shape of the charge, and allow for inhomogeneity, internal currents, elasticity, and spin. Even if the angular momentum remains small, many such systems are found to be affected by large self-interaction effects beyond the standard Lorentz-Dirac force. These are particularly significant if the particle's charge density fails to be much greater than its 3-current density (or vice versa) in the center-of-mass frame. Additional terms also arise in the equations of motion if the dipole moment is too large, and when the `center-of-electromagnetic mass' is far from the `center-of-bare mass' (roughly speaking). These conditions are often quite restrictive. General equations of motion were also derived under the assumption that the particle can only interact with the radiative component of its self-field. These are much simpler than the equations derived using the full retarded self-field; as are the conditions required to recover the Lorentz-Dirac equation.Comment: 30 pages; significantly improved presentation; accepted for publication in Phys. Rev.

    Absence of a consistent classical equation of motion for a mass-renormalized point charge

    Full text link
    The restrictions of analyticity, relativistic (Born) rigidity, and negligible O(a) terms involved in the evaluation of the self electromagnetic force on an extended charged sphere of radius "a" are explicitly revealed and taken into account in order to obtain a classical equation of motion of the extended charge that is both causal and conserves momentum-energy. Because the power-series expansion used in the evaluation of the self force becomes invalid during transition time intervals immediately following the application and termination of an otherwise analytic externally applied force, transition forces must be included during these transition time intervals to remove the noncausal pre-acceleration and pre-deceleration from the solutions to the equation of motion without the transition forces. For the extended charged sphere, the transition forces can be chosen to maintain conservation of momentum-energy in the causal solutions to the equation of motion within the restrictions of relativistic rigidity and negligible O(a) terms under which the equation of motion is derived. However, it is shown that renormalization of the electrostatic mass to a finite value as the radius of the charge approaches zero introduces a violation of momentum-energy conservation into the causal solutions to the equation of motion of the point charge if the magnitude of the external force becomes too large. That is, the causal classical equation of motion of a point charge with renormalized mass experiences a high acceleration catastrophe.Comment: 13 pages, No figure

    Impacts of misalignment effects on the Muon Spectrometer Performance

    Get PDF
    The ATLAS detector, currently being installed at CERN, is designed to exploit the full potential of the LHC, identifying and providing highly accurate energy and momentum measurements of particles emerging from the LHC protonproton collisions with a centre-of-mass energy at 14 TeV, starting in 2007. High-momentum final-state muons are among the most promising signatures at the LHC, thanks to a high-resolution Muon Spectrometer with standalone triggering and momentum measurement. As well known, muons interact primarily trough their electromagnetic charge, but since they are 200 times more massive than the electrons they are less affected by the electric fields of the nuclei they encounter. Muons with an energy of more than a few GeV penetrate the calorimeter and can reach the Muon Spectrometer, which consists out of more than 1.200 single drift-tubes chambers. The correct alignment of the ATLAS Muon Spectrometer is crucial to ensure its design performance. This note documents the first attempt at using various misaligned Muonspectrometer layouts to study their impacts Muon Spectrometer performance

    New Exclusion Limits for the Search of Scalar and Pseudoscalar Axion-Like Particles from "Light Shining Through a Wall"

    Full text link
    Physics beyond the Standard Model predicts the possible existence of new particles that can be searched at the low energy frontier in the sub-eV range. The OSQAR photon regeneration experiment looks for "Light Shining through a Wall" from the quantum oscillation of optical photons into "Weakly Interacting Sub-eV Particles", such as axion or Axion-Like Particles (ALPs), in a 9 T transverse magnetic field over the unprecedented length of 2×14.32 \times 14.3 m. In 2014, this experiment has been run with an outstanding sensitivity, using an 18.5 W continuous wave laser emitting in the green at the single wavelength of 532 nm. No regenerated photons have been detected after the wall, pushing the limits for the existence of axions and ALPs down to an unprecedented level for such a type of laboratory experiment. The di-photon couplings of possible pseudo-scalar and scalar ALPs can be constrained in the nearly massless limit to be less than 3.5⋅10−83.5\cdot 10^{-8} GeV−1^{-1} and 3.2⋅10−83.2\cdot 10^{-8} GeV−1^{-1}, respectively, at 95% Confidence Level.Comment: 6 pages, 6 figure

    Idiopathic orthostatic hypotension: Recent data (eleven cases) and review of the literature

    Get PDF
    Eight cases of Shy-Drager syndrome and three of Bradbury-Eggleston idiopathic orthostatic hypotension were examined. In all cases, examination of circulatory reflexes showed major dysfunction of the sympathetic vasoconstrictor system. Anomalies in the vagal cardiomoderator system were less constant. Normal urinary elimination of catecholamines was recorded daily. Characteristically, no elevation of blood or urine norepinephrine levels were found in orthostatism. Insulin hypoglycemia normally raised urinary adrenalin elimination in three of ten patients. Plasma dopa-beta-hydroxylase activity was normal. Renin-angiotensin-aldosterone system showed variable activity at basal state but usually rose during orthostatism. On the average, very low homovanillic acid levels were found in cerebrospinal fluid before and after probenecid; hydroxyindolacetic acid was normal. Cerebral autoregulation had deteriorated in two of four cases. Physiopathologically the two clinical types are indistinguishable with or without central neurological signs
    • …
    corecore