research

Impacts of misalignment effects on the Muon Spectrometer Performance

Abstract

The ATLAS detector, currently being installed at CERN, is designed to exploit the full potential of the LHC, identifying and providing highly accurate energy and momentum measurements of particles emerging from the LHC protonproton collisions with a centre-of-mass energy at 14 TeV, starting in 2007. High-momentum final-state muons are among the most promising signatures at the LHC, thanks to a high-resolution Muon Spectrometer with standalone triggering and momentum measurement. As well known, muons interact primarily trough their electromagnetic charge, but since they are 200 times more massive than the electrons they are less affected by the electric fields of the nuclei they encounter. Muons with an energy of more than a few GeV penetrate the calorimeter and can reach the Muon Spectrometer, which consists out of more than 1.200 single drift-tubes chambers. The correct alignment of the ATLAS Muon Spectrometer is crucial to ensure its design performance. This note documents the first attempt at using various misaligned Muonspectrometer layouts to study their impacts Muon Spectrometer performance

    Similar works